Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (6): 481-486    
  研究报告 本期目录 | 过刊浏览 |
铈掺杂TiO2薄膜抗海水中硫酸盐还原菌的腐蚀性能研究
王洪芬1,王志奇2,洪海霞1,陈守刚1,尹衍升1
1. 中国海洋大学材料科学与工程研究院 青岛 266100
2. 中国科学院青岛生物能源与过程研究所 青岛 266101
CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA
WANG Hongfen1, WANG Zhiqi2, HONG Haixia1, CHEN Shougang1,YIN Yansheng1
1. Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100
2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101
全文: PDF(2312 KB)  
摘要: 采用溶胶-凝胶法在304不锈钢表面制备了铈掺杂TiO2薄膜,并采用半连续培养方式在海水中培养硫酸盐还原菌(SRB)。通过形貌观察及电化学方法研究浸泡于菌液中的空白304不锈钢及铈掺杂TiO2/304ss电极的腐蚀行为。结果指出,在304不锈钢表面涂覆铈掺杂TiO2薄膜后能显著抑制硫酸盐还原菌的附着行为;涂膜电极在硫酸盐还原菌菌液中的自腐蚀电流密度低于同期浸泡的空白304不锈钢电极,而电化学阻抗值则高于同期浸泡的空白304不锈钢电极,表明在304不锈钢表面涂覆铈掺杂TiO2薄膜能起到抗海水中硫酸盐还原菌附着腐蚀的作用。
关键词 TiO2薄膜硫酸盐还原菌极化曲线电化学阻抗谱304不锈钢    
Abstract:Cerium-doped TiO2 film was prepared on 304 stainless steel by a sol-gel process. Sulfate-reducing bacteria(SRB) was incubated by semi-continuous culture method. The effect of SRB on corrosion behavior of cerium-doped TiO2/304ss and bare 304ss immersed in SRB medium were studied by morphology analysis and electrochemical methods. The results showed that cerium-doped TiO2 film on 304ss could inhibit attachment of SRB. The corrosion current density of cerium-doped TiO2/304ss was lower, while electrochemical impedance was higher than that of bare 304ss. Therefore, a conclusion could be drawn that cerium-doped TiO2 film coating on 304ss could inhibit attachment of SRB and prevent corrosion caused by SRB in seawater.
Key wordsTiO2 thin film    sulfate-reducing bacteria    polarization    electrochemical impedance spectroscopy    304 stainless steel
收稿日期: 2009-10-12     
ZTFLH: 

TG172

 
基金资助:

国家自然科学基金项目(50672090,50702053)和山东省自然科学基金项目(Y2008B46)资助

通讯作者: 尹衍升      E-mail: yys2003@ouc.edu.cn
Corresponding author: WANG Hongfen     E-mail: yys2003@ouc.edu.cn
作者简介: 王洪芬,1975年生,女,博士,讲师,研究方向为微生物腐蚀

引用本文:

王洪芬,王志奇,洪海霞,陈守刚,尹衍升. 铈掺杂TiO2薄膜抗海水中硫酸盐还原菌的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
YU Hong-Fen, YU Zhi-Ai. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA. J Chin Soc Corr Pro, 2010, 30(6): 481-486.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I6/481

[1] Duan J Z, Wu S, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim.Acta., 2008, 54: 22-28

[2] Yebra D M, Kiil S, Weinell C E, et al. Effects of marine microbial biofilms on the biocide release rate from antifouling paints-a model-based analysis [J]. Prog. Org. Coat.,2006, 57: 56-66

[3] Mattila K, Carpen L, Hakkarainen T, et al.Biofilm development  during ennoblement of stainless steel in Baltic sea water: A microscopic study [J]. Int. Biodeterior. Biodegrad.,1997, 40(1): 1-10

[4] Yin Y S, Cheng S, Chen S G, et al.Microbially influenced corrosion of 303 stainless steel by marine bacterium vibrio natriegens: (II) Corrosion mechanism [J].Mater. Sci. Eng., 2009, C29: 756-760

[5] Duan J Z, Hou B R, Yu Z G.Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria [J].Mater. Sci. Eng., 2006, C26: 624-629

[6] Liu H F, Xu L M, Zheng J S.Influence of SRB biofilm on corrosion of carbon steel [J]. J. Chin.Soc. Corros. Prot., 2000, 20 (1): 41-46

    (刘宏芳, 许立铭, 郑家燊. SRB生物膜与碳钢腐蚀的关系 [J]. 中国腐蚀与防护学报, 2000, 20(1): 41-46)

[7] Gonzalez J E G, Santana F J H, Mirza-rosca J C. Effect of bacterial biofilm on 316ss corrosion in natural seawater by EIS [J].Corros. Sci., 1998, 40(12): 2141-2154

[8] Wang D H, Bierwagen G P.Sol-gel coatings on metals for corrosion protection [J]. Prog. Org.Coat., 2009, 64(4): 327-338

[9] Cottis R, Turgoose S. Analysis of electrochemical impedance spectroscopy data. In: Syrett B C ed.,Corrosion testing made easy: Electrochemical Impedance and Noise Analysis [M]. NACE International, Houston, TX, 1999

[10] Bao Y S. Corrosion Behavior of TiO2 Film in Seawater [D].Qingdao: Ocean University of China, 2008

    (鲍玉胜. TiO2薄膜的耐海水腐蚀性能研究 [D]. 青岛: 中国海洋大学, 2008)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[10] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[13] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[14] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[15] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.