Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (4): 333-336    
  研究报告 本期目录 | 过刊浏览 |
模拟工业大气条件下高锰耐候钢的腐蚀行为
王博1,卢凯1,王建景1,姜茂发2,王德永2,刘承军2
1. 莱芜钢铁集团有限公司 莱芜 271104
2. 东北大学材料与冶金学院 沈阳 110819
CORROSION BEHAVIOR OF WEATHERING STEEL WITH HIGH MANGANESE CONTENT IN CONDITION SIMULATIING INDUSTRIAL ATMOSPHERE
WANG Bo1, LU Kai1, WANG Jianjing1, JIANG Maofa2,WANG Deyong2, LIU Chengjun2
1. Laiwu Steel Group Ltd., Laiwu 271104
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
全文: PDF(706 KB)  
摘要: 

应用电化学阻抗谱研究了在模拟工业大气的腐蚀溶液中Mn对耐候钢耐腐蚀性能的影响,并通过锈层电子探针面扫描验证了实验结果。电化学阻抗谱结果显示,在腐蚀初期高锰耐候钢表现出较强的点蚀反应特征,腐蚀后期则显示和比对钢相同的耐腐蚀能力。在模拟工业大气腐蚀条件下,Mn在耐候钢的内锈层中没有产生富集,Cr 和Cu在内锈层和钢基体界面中形成了富集带,这是保护性锈层生成的主要原因。

关键词 耐候钢Mn电化学阻抗谱保护性锈层电子探针    
Abstract

In order to clarify the influence of elemental Mn on corrosion resistance of weathering steel in solution simulating industrial atmosphere, EIS (electrochemical impedance spectrum) were measured and the obtained results were verified by EPMA (electron probe micro-analyzer). EIS tests showed that, at the early stage of corrosion, the weathering steel with high Mn content had a more remarkable pitting generation characteristic than the reference steel. At the late stage of corrosion, two experimental steels had comparable corrosion resistance. The result of EPMA proved that Cu and Cr were main contributors to form protective rust layer because they were enriched at the interface between inner rust layer and substrate but no enrichment of Mn in the rust was observed.

Key wordsweathering steel    manganese    EIS    protective rust layer    EPMA
收稿日期: 2009-06-18     
ZTFLH: 

TG172

 
通讯作者: 王博     E-mail: wz8295@163.com
Corresponding author: Wang Bo     E-mail: wz8295@163.com
作者简介: 王博,男,1975年生,博士,高级工程师,研究方向为高强韧耐候钢的开发与应用

引用本文:

王博,卢凯,王建景,姜茂发,王德永,刘承军. 模拟工业大气条件下高锰耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 333-336.
YU Bo. CORROSION BEHAVIOR OF WEATHERING STEEL WITH HIGH MANGANESE CONTENT IN CONDITION SIMULATIING INDUSTRIAL ATMOSPHERE. J Chin Soc Corr Pro, 2010, 30(4): 333-336.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I4/333

[1] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41 (3): 1687-1702
[2] Cook D C, Oh S J, Balasubramanian R, et al. The role of goethite in the formation of the protective corrosion layer on steels [J]. Hyperfine Interact., 1999, 122: 59-70
[3] Ishikawa T, Kumagai M, Yasukawa A, et al. Influences of metal ions on the formation of γ-FeOOH and maganetite rusts [J]. Corros. Sci., 2002,44(5): 1073-1086
[4] Yamashita M H, Konishi T, Kozakura J, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492-2498
[5] Katayama H, Noda K, Masuda H, et al. Corrosion simulation of carbon steels in atmospheric environment [J]. Corros.Sci., 2005, 47: 2599-2606
[6] Cao C N. Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2004. 105-107
    (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004. 105-107; 184-189)
[7] Cao C N, Zhang J Q. Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002. 95-98
    (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002. 95-98)
[8] Guedes I C, Aoki I V, Carmezim M J, et al. The influence of copper and chromium on the semiconducting behavior of passive films formed on weathering steels [J]. Thin Solid Films, 2006, 4: 1-6
[9] Yamashita M H, Miyuki Y. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36(2): 283-289
[10] Zhang Q C, Wang J J, Wu J S, et al. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, 37(2): 193
     (张全成, 王建军, 吴建生等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, 37(2): 193)

[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.