Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1441-1449     CSTR: 32134.14.1005.4537.2024.345      DOI: 10.11902/1005.4537.2024.345
  研究报告 本期目录 | 过刊浏览 |
CO2-CO气氛下3.5%硅钢固态脱碳氧化层演变规律
孙伶艳1, 洪陆阔1, 孙彩娇1(), 艾立群1, 周美洁1, 闻莉2
1 华北理工大学冶金与能源学院 唐山 063210
2 安阳钢铁股份有限公司 安阳 455004
Evolution of Oxide Scale of 3.5% Silicon Steel in Solid State Decarburization in CO2-CO Atmospheres
SUN Lingyan1, HONG Lukuo1, SUN Caijiao1(), AI Liqun1, ZHOU Meijie1, WEN Li2
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
2 Anyang Iron and Steel Corporation Limited, Anyang 455004, China
引用本文:

孙伶艳, 洪陆阔, 孙彩娇, 艾立群, 周美洁, 闻莉. CO2-CO气氛下3.5%硅钢固态脱碳氧化层演变规律[J]. 中国腐蚀与防护学报, 2025, 45(5): 1441-1449.
Lingyan SUN, Lukuo HONG, Caijiao SUN, Liqun AI, Meijie ZHOU, Li WEN. Evolution of Oxide Scale of 3.5% Silicon Steel in Solid State Decarburization in CO2-CO Atmospheres[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1441-1449.

全文: PDF(15281 KB)   HTML
摘要: 

以3.5% (质量分数)硅钢为研究对象,CO2-CO为主要脱碳气氛,探讨温度及PCO2/PCO (分压比)对3.5%硅钢固态脱碳氧化层演变的影响。实验气氛中的O与硅钢中固相C发生反应,通过固态脱碳法将硅钢中的C脱除,与Si结合形成SiO2氧化层。结果表明,在相同时间内,升高温度会加速氧化层生长;相同温度下,延长脱碳时间会导致氧化层逐步增厚。升高PCO2/PCO会加速表面氧化层的形成,在脱碳早期阶段即阻碍脱碳反应。本研究为优化脱碳工艺、控制氧化层厚度提供了重要理论依据。

关键词 3.5%硅钢固态脱碳氧化层CO2-CO    
Abstract

The manufacturing of silicon steel mainly relies on a technology of long process, which has a long process flow, many process nodes and high carbon emissions. In order to actively respond to the policy related with “carbon emission peak and carbon neutrality” and help enterprises achieve energy conservation and emission reduction. A new method was proposed for preparing high-silicon silicon steel thin strips by scrap steel-electric furnace-twin roll casting-solid decarburization. Herein, the effect of temperature and partial pressure ratio of PCO2/PCO on the evolution of the solid decarburization oxide scale on 3.5% (mass fraction) silicon steel tripe was studied. During the process carbon in the silicon steel will react with oxygen, so that being removal, while the Si reacts with oxygen forming SiO2 oxide scale. The results show that for a setting reaction time, with the increasing temperature the oxide scale thickens gradually; for a setting temperature, the oxide scale gradually thickens with the extending decarburization time. Increasing PCO2/PCO will accelerate the formation of the surface oxide scale, which will hinder the decarburization reaction in the early stage of decarburization. This study provides an important reference for optimizing the decarburization process and controlling the thickness of the oxide scale.

Key words3.5% silicon steel    solid-state decarburization    oxide layer    CO2-CO
收稿日期: 2024-10-18      32134.14.1005.4537.2024.345
ZTFLH:  TG174  
基金资助:河北省自然科学基金(E2024209074)
通讯作者: 孙彩娇,E-mail:Suncj@ncst.edu.cn,研究方向为钢铁冶金新方法、新工艺
Corresponding author: SUN Caijiao, E-mail: Suncj@ncst.edu.cn
作者简介: 孙伶艳,女,2000年生,硕士生
图1  固态脱碳装置
图2  不同PCO2/PCO条件下脱碳后硅钢的C含量
图3  在2种PCO2/PCO条件下脱碳后硅钢表面氧化层的截面形貌对比
图4  不同PCO2/PCO下脱碳后硅钢表面物相分析
图5  不同气体流量下脱碳后硅钢的C含量
图6  不同气体流量下C含量随时间变化曲线图
图7  两种气体流量下脱碳30 min后硅钢表面氧化层截面形貌
图8  脱碳后硅钢表面氧化层截面元素分布图
图9  初始硅钢试样元素沿深度分布的GDMS分析结果
图10  脱碳30 min后元素沿深度分布的GDMS分析
图11  脱碳过程中硅钢表面氧化层生长机制
图12  不同温度下脱碳10 min后硅钢试样截面SEM照片
图13  不同温度下脱碳30 min后硅钢试样截面SEM照片
图14  PCO2/PCO = 0.10条件下脱碳时硅钢试样表面氧化层形貌演变
图15  PCO2/PCO = 0.20条件下脱碳时硅钢表面氧化层形貌演变
[1] Zhang F C, Hong L K, Xu Y. Prospects for green steelmaking technology with low carbon emissions in China [J]. Carbon Energy, 2024, 6: e456
[2] Zhang F Q, Zhang W L, Sun W Q. Current status and development direction of electrical steel in China [J]. Electr. Steel, 2024, 6(4): 1
[2] 张凤泉, 张维林, 孙文权. 我国冷轧硅钢近10年发展现状及方向研究 [J]. 电工钢, 2024, 6(4): 1
[3] Zhang P. New energy industry development and silicon steel material characteristics [J]. China Steel Focus, 2024, (7): 23
[3] 张鹏. 新能源产业发展与硅钢用材特点浅析 [J]. 冶金管理, 2024, (7): 23
[4] Dong J C, Wang X Y, Cai B F, et al. Mitigation technologies and marginal abatement cost for iron and steel industry in China [J]. Environ. Eng., 2021, 39(10): 23
[4] 董金池, 汪旭颖, 蔡博峰 等. 中国钢铁行业CO2减排技术及成本研究 [J]. 环境工程, 2021, 39(10): 23
[5] Hong L K, Ai L Q, Cheng R, et al. Fe-C alloy ribbons gas-solid decarburization process [J]. J. Iron Steel Res., 2016, 28(5): 36
[5] 洪陆阔, 艾立群, 程 荣 等. 铁碳合金薄带气固反应脱碳工艺 [J]. 钢铁研究学报, 2016, 28(5): 36
doi: 10.13228/j.boyuan.issn1001- 0963.20150127
[6] Li Y Q, Ai L Q. Development of new solid-state steelmaking process [J]. Foundry Technol., 2017, 38(1): 8
[6] 李亚强, 艾利群. 固态炼钢新工艺研究的提出与进展 [J]. 铸造技术, 2017, 38(1): 8
[7] Li Q, Ai L Q, Li Y Q, et al. Study of gas-solid decarburization process for Fe-C alloy [J]. Foundry Technol., 2017, 38: 1650
[7] 李 强, 艾立群, 李亚强 等. 铁碳合金气-固脱碳反应研究 [J]. 铸造技术, 2017, 38: 1650
[8] Zhou M J. Decarburization kinetics of Fe-C alloy strip with gas-solid reaction in CO-CO2 atmosphere [D]. Tangshan: North China University of Science and Technology, 2020
[8] 周美洁. Ar-CO-CO2气氛下铁碳合金薄带气-固反应脱碳动力学分析 [D]. 唐山: 华北理工大学, 2020
[9] Zhou M J, Hong L K, Ai L Q, et al. Influence of CO-CO2 mixture on gas-solid decarburization reaction of Fe-C alloy sheet [J]. Iron Steel Vanad. Titanium, 2020, 41(1): 100
[9] 周美洁, 洪陆阔, 艾立群 等. CO-CO2气氛条件对铁碳合金薄带脱碳的影响 [J]. 钢铁钒钛, 2020, 41(1): 100
[10] Hou Y B, Ai L Q, Hong L K, et al. Gas-solid reaction decarburization of Fe-C alloy in CO/CO2 [J]. Iron Steel, 2020, 55(11): 133
[10] 侯耀斌, 艾立群, 洪陆阔 等. CO/CO2气氛下Fe-C合金气固反应脱碳 [J]. 钢铁, 2020, 55(11): 133
doi: 10.13228/j.boyuan.issn0449-749x.20200062
[11] Sun C J, Ai L Q, Hong L K, et al. Mechanism of carbon diffusion in solid state steelmaking from the Fe-C alloy strip through gas-solid decarburization in H2/H2O [J]. Mater. Rep., 2020, 34: 20112
[11] 孙彩娇, 艾立群, 洪陆阔 等. H2/H2O气氛下Fe-C合金气固反应脱碳机理 [J]. 材料导报, 2020, 34: 20112
[12] Zhou M J, Ai L Q, Hong L K, et al. Experimental study on decarburization of iron-carbon alloy sheet under CO-CO2 atmosphere [J]. Iron Steel Vanad. Titanium, 2020, 41(6): 94
[12] 周美洁, 艾立群, 洪陆阔 等. CO-CO2气氛条件下铁碳合金薄带脱碳试验研究 [J]. 钢铁钒钛, 2020, 41(6): 94
[13] Ai L Q, Hou Y B, Hong L K, et al. Gas-solid reaction kinetics of decarburization of Fe-C alloy strips in H2/H2O [J]. Chin. J. Eng., 2021, 43: 816
[13] 艾立群, 侯耀斌, 洪陆阔 等. H2/H2O气氛下Fe-C合金薄带气固脱碳反应动力学 [J]. 工程科学学报, 2021, 43: 816
[14] Zhou M J, Ai L Q, Hong L K, et al. Comparison of decarburization of Fe-C alloy strips in CO2 and H2O atmosphere [J]. Iron Steel, 2021, 56(5): 49
[14] 周美洁, 艾立群, 洪陆阔 等. CO2和H2O气氛下Fe-C合金薄带脱碳对比 [J]. 钢铁, 2021, 56(5): 49
doi: 10.13228/j.boyuan.issn0449-749x.20200426
[15] Meng F J, Ai L Q, Hong L K, et al. Experimental study on decarbonization of Fe-C-Mn thin strips in Ar-H2O-H2 atmosphere [J]. Iron Steel Vanad. Titanium, 2021, 42(5): 132
[15] 孟凡峻, 艾立群, 洪陆阔 等. Ar-H2O-H2气氛下Fe-C-Mn薄带脱碳试验研究 [J]. 钢铁钒钛, 2021, 42(5): 132
[16] Sun C J, Ai L Q, Hong L K, et al. Kinetics of Fe-C alloy sheets during gas-solid decarbonization in Ar-CO-CO2 [J]. Mater. Rep., 2021, 35: 24142
[16] 孙彩娇, 艾立群, 洪陆阔 等. Ar-CO-CO2气氛下铁碳合金薄带气固反应脱碳动力学研究 [J]. 材料导报, 2021, 35: 24142
[17] Zhou Y Q, Ai L Q, Hong L K, et al. Experimental study on solid state decarburization of Fe-C-Si alloy [J]. J. Mater. Metall., 2023, 22(1): 45
[17] 周玉青, 艾立群, 洪陆阔 等. Fe-C-Si合金固态脱碳实验 [J]. 材料与冶金学报, 2023, 22(1): 45
[18] Zhou Y Q, Ai L Q, Hong L K, et al. Evolution of oxide layer during solid decarburization of Fe-C-Si alloy [J]. Iron Steel, 2023, 58(12): 107
[18] 周玉青, 艾立群, 洪陆阔 等. Fe-C-Si合金固态脱碳过程氧化层演变规律 [J]. 钢铁, 2023, 58(12): 107
doi: 10.13228/j.boyuan.issn0449-749x.20230224
[19] Wang X F, Sun C J, Ai L Q, et al. Feasibility of CO2/CO substitute for H2O/H2 atmosphere for preparation of high-grade silicon steel [J]. Iron Steel, 2024, 59(11): 79
[19] 王旭锋, 孙彩娇, 艾立群 等. CO2/CO替代H2O/H2气氛制备高牌号硅钢可行性 [J]. 钢铁, 2024, 59(11): 79
[20] Wen L, Ai L Q, Hong L K, et al. Diffusion behavior of carbon and silicon in the process of preparing silicon steel using solid-state decarburization [J]. Processes, 2023, 11: 3176
[21] Zhou M J, Ai L Q, Hong L K, et al. Decarburisation of Fe-C alloy strips by gas-solid reaction in Ar-CO-CO2 [J]. Metall. Res. Technol., 2022, 119: 108
[22] Sun C J, Ai L Q, Hong L K, et al. Study on solid state steelmaking from thin cast iron sheets through decarburization in H2O-H2 [J]. Ironmak. Steelmak., 2020, 47: 1015
[23] Liu Y X, Liu X Q, Cheng L, et al. High temperature oxidation behavior of high silicon non oriented electrical steel [J]. J. Mater. Metall., 2024, 23(3): 264
[23] 刘云霞, 刘晓强, 程 林 等. 高硅无取向电工钢的高温氧化行为 [J]. 材料与冶金学报, 2024, 23(3): 264
[24] Cao G M, Shan W C, Liu X J, et al. High temperature oxidation behavior of Fe-2.2%Si steel in different atmosphere [J]. Iron Steel, 2022, 57(8): 132
[24] 曹光明, 单文超, 刘小江 等. Fe-2.2%Si钢在不同气氛下的高温氧化行为 [J]. 钢铁, 2022, 57(8): 132
doi: 10.13228/j.boyuan.issn0449-749x.20220113
[25] Li H, Lu J D, Yue C X, et al. Influence of coiling temperature on oxide scale of 1.5%Si non-oriented electrical steel [J]. Trans. Mater. Heat Treat., 2020, 41(10): 73
[25] 李 慧, 陆佳栋, 岳重祥 等. 卷取温度对1.5%Si无取向硅钢氧化皮的影响 [J]. 材料热处理学报, 2020, 41(10): 73
[1] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[2] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.