Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 81-91     CSTR: 32134.14.1005.4537.2024.246      DOI: 10.11902/1005.4537.2024.246
  研究报告 本期目录 | 过刊浏览 |
TiAl合金表面电沉积SiO2 涂层抗循环氧化性能研究
严豪杰1, 殷若展1, 汪文君2, 孙擎擎1, 伍廉奎1(), 曹发和1
1 中山大学材料学院 深圳 518107
2 中国航发湖南动力机械研究所 株洲 412002
Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating
YAN Haojie1, YIN Ruozhan1, WANG Wenjun2, SUN Qingqing1, WU Liankui1(), CAO Fahe1
1 School of Materials, Sun Yat-sen University, Shenzhen 518107, China
2 AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China
引用本文:

严豪杰, 殷若展, 汪文君, 孙擎擎, 伍廉奎, 曹发和. TiAl合金表面电沉积SiO2 涂层抗循环氧化性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
Haojie YAN, Ruozhan YIN, Wenjun WANG, Qingqing SUN, Liankui WU, Fahe CAO. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 81-91.

全文: PDF(17855 KB)   HTML
摘要: 

针对TiAl合金在热循环环境中的抗氧化需求,本文采用电沉积方法在TiAl合金表面制备了SiO2涂层,并研究了涂层在900 ℃下的抗循环氧化性能,分析了电沉积SiO2涂层的失效机制。实验结果表明,电沉积SiO2涂层可有效提高TiAl合金的抗循环氧化性能。SiO2涂层可与TiAl基体发生反应生成 Ti5Si3,促进界面处选择性氧化生成Al2O3层,起到扩散阻挡作用。然而,由于SiO2涂层与TiAl合金存在热失配问题,会导致涂层内热应力集中,从而萌生裂纹。裂纹为氧的向内扩散和基体元素的向外扩散提供了通道,在氧化膜表面形成大量团簇,导致了SiO2涂层连续致密的结构遭到破坏,但SiO2涂层循环氧化200 h后仍未发生剥落,说明其仍保持一定的高温防护能力。

关键词 TiAl合金电沉积SiO2涂层循环氧化热应力    
Abstract

To improve the oxidation resistance of TiAl alloy in the thermal cycling environment, SiO2 coating was electrodeposited on the surface of a vacuum cast γ-TiAl alloy. The cyclic oxidation behavior of the SiO2 coating/TiAl alloy in air at 900 oC was studied, with each cycle consists of oxidation at 900 oC for 50 min and cooling to room temperature for 10 min. The failure mechanism of the electrodeposited SiO2 coating was analyzed. Results showed that the electrodeposited SiO2 coating can effectively improve the cyclic oxidation resistance of TiAl alloy. Furthermore, the SiO2 coating can react with the TiAl substrate to form Ti5Si3 and promote the selective oxidation of TiAl to form an Al2O3 scale, which acts as a diffusion barrier. However, due to the thermal mismatch between the SiO2 coating and TiAl alloy, thermal stress concentration in the coating will lead to the initiation of cracks. The cracks provide channels for the inward diffusion of oxygen and the outward diffusion of matrix elements, resulting in the generation of a large number of clusters on the surface of the oxide scale, thus destroying the continuous and dense structure of the SiO2 coating. However, no spallation can be observed on the SiO2 coating after cyclic oxidation for 200 h, indicating that the SiO2 coating still maintains a certain high temperature protection ability.

Key wordsTiAl alloy    electrodeposited SiO2 coating    cyclic oxidation    thermal stress
收稿日期: 2024-08-06      32134.14.1005.4537.2024.246
ZTFLH:  V254.2  
基金资助:国家自然科学基金(52271084; 51971205);广东省基础与应用基础研究基金(2021B1515020056)
通讯作者: 伍廉奎,E-mail:wulk5@mail.sysu.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: WU Liankui, E-mail: wulk5@mail.sysu.edu.cn
作者简介: 严豪杰,男,1998年生,博士生
图1  电沉积SiO2涂层-TiAl基体二维有限元模型
MaterialDensity / g·cm-3CTE / 10-6 K-1Poisson's ratioYoung's modulus / GPa
TiAl~3.8[29]~12[29]0.22[30]137.5[31]
SiO22.4[27]0.5[27]0.16[27]70[27]
表1  基体和涂层的物性参数
图2  电沉积SiO2涂层的表面形貌和截面形貌
图3  TiAl合金和电沉积SiO2涂层在900 ℃下的循环氧化动力学曲线
图4  TiAl合金和电沉积SiO2涂层900 ℃循环氧化100和200 h后的XRD图谱
图5  TiAl合金900 ℃循环氧化100 h后的表面形貌以及截面形貌及其元素面扫图
PositionTiAlO
121.20.378.5
220.522.656.9
35.927.167.0
452.847.20
526.13.670.3
67.524.568.0
719.017.963.1
868.631.4-
951.548.5-
表2  图5中各点处EDS结果 (atomic fraction / %)
图6  电沉积SiO2涂层900 ℃循环氧化100 h后的表面形貌以及截面形貌及其元素面扫图
PositionTiAlSiOK
10.60.433.765.10.2
27.71.513.974.72.2
32.31.922.466.86.5
42.62.923.263.77.6
53.414.114.962.55.1
664.835.2---
表3  图6中各点处EDS结果 (atomic fraction / %)
图7  电沉积SiO2涂层900 ℃循环氧化200 h后的表面形貌、截面形貌和元素面扫图
PositionTiAlSiOK
111.93.67.776.8-
20.50.537.461.6-
36.415.116.161.50.9
412.112.429.245.60.7
56.432.32.758.6-
659.940.1---
表4  图7中各点处EDS结果 (atomic fraction / %)
图8  电沉积SiO2涂层900 ℃循环氧化200 h后的XPS能谱
图9  电沉积SiO2涂层升温至900 ℃后X方向正应力σ11分布图,Y方向正应力σ22分布图,热应力分布图和典型节点的热应力数值柱状图
图10  电沉积SiO2涂层900 ℃循环氧化失效过程示意图
1 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
2 Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, 263A: 281
3 Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
4 Wang D S, Tian Z J, Chen Z Y, et al. High-temperature oxidation resistance coatings on TiAl alloy surface [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 1
4 王东生, 田宗军, 陈志勇 等. TiAl合金表面抗高温氧化涂层研究 [J]. 中国腐蚀与防护学报, 2009, 29: 1
5 Cheng X Y, Wan X J, Shen J N. The effect of Nb on the oxidation behavior of TiAl alloy at high temperature [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 69
5 程晓英, 万晓景, 沈嘉年. 合金元素Nb在TiAl高温氧化行为中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 69
6 Wang F H, Tang Z L, Wu W T. Effect of chromium on the oxidation resistance of TiAl intermetallics [J]. Oxid. Met., 1997, 48: 381
7 Dong L M, Cui Y Y, Yang R, et al. Effects of element Si on oxidation resistance of TiAl alloys [J]. Acta Metall. Sin., 2004, 40: 383
7 董利民, 崔玉友, 杨 锐 等. 元素Si对TiAl合金抗氧化性能的影响 [J]. 金属学报, 2004, 40: 383
8 Wu Y, Umakoshi Y, Li X W, et al. Isothermal oxidation behavior of Ti-50Al alloy with Y additions at 800 and 900 oC [J]. Oxid. Met., 2006, 66: 321
9 Pflumm R, Donchev A, Mayer S, et al. High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys [J]. Intermetallics, 2014, 53: 45
10 Shida Y, Anada H. The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air [J]. Corros. Sci., 1993, 35: 945
11 Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
12 Xu J X, Geng S J, Wang J L, et al. Effect of coating process temperatures on hot corrosion behavior induced by deposit of sulfates salts in air at 750 oC for CVD aluminized coatings on K452 superalloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 612
12 徐佳新, 耿树江, 王金龙 等. K452合金表面CVD渗铝涂层制备温度对其750 ℃硫酸盐热腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 612
doi: 10.11902/1005.4537.2023.182
13 Li Y, Ma K, Xu J J, et al. Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy [J]. Corros. Sci., 2024, 226: 111696
14 Yang L L, Chen M H, Wang J L, et al. Oxidation of duplex coatings with different thickness ratio of the inner nanocrystalline layer to the outer NiCrAlY one [J]. Corros. Sci., 2018, 143: 136
15 Bik M, Galetz M, Mengis L, et al. Oxidation behaviour of uncoated and PDC-SiAlOC glass-coated TiAl at 750 oC in dry and humid air [J]. Appl. Surf. Sci., 2023, 632: 157601
16 Ai P, Liu L X, Li X G, et al. Influence of TiAlSiN coatings on high temperature oxidation resistance of γ-TiAl based alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 306
16 艾 鹏, 刘礼祥, 李晓罡 等. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 306
17 Wu J J, Yan H J, Cao F H, et al. Oxidation performance and interfacial reaction behavior of glass-ceramic coating on TiAl alloy with electrodeposited SiO2 interlayer [J]. Surf. Coat. Technol., 2021, 422: 127495
18 Liu S Y, Geng S J, Wang J L, et al. High temperature oxidation and solid Na2SO4 induced corrosion of CVD aluminide coating on K444 alloy in air [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 553
18 刘姝妤, 耿树江, 王金龙 等. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀 [J]. 中国腐蚀与防护学报, 2023, 43: 553
doi: 10.11902/1005.4537.2022.241
19 Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
19 宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812
20 Xie W, Fu Q G, Cheng C Y, et al. Experimental and theoretical study on the effect of different rare-earth oxides on the high-temperature stability of SiO2 glass at 1973 K [J]. Ceram. Int., 2020, 46: 24371
21 Taniguchi S, Shibata T, Katoh N. Improvement in the high-temperature oxidation resistance of TiAl by sol-derived SiO2 coating [J]. J. Japan Inst. Met. Mater., 1993, 57: 666
22 Teng S J, Liang W, Li Z L, et al. Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol-gel method [J]. J. Alloy. Compd., 2008, 464: 452
23 Wang C, Wang W, Zhu S L, et al. Oxidation inhibition of γ-TiAl alloy at 900 oC by inorganic silicate composite coatings [J]. Corros. Sci., 2013, 76: 284
24 Wu L K, Wu W Y, Song J L, et al. Enhanced high temperature oxidation resistance for γ-TiAl alloy with electrodeposited SiO2 film [J]. Corros. Sci., 2018, 140: 388
25 Wu L K, Wu J J, Wu W Y, et al. High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating [J]. Corros. Sci., 2019, 146: 18
26 Wang Q, Wu W Y, Jiang M Y, et al. Improved oxidation performance of TiAl alloy by a novel Al-Si composite coating [J]. Surf. Coat. Technol., 2020, 381: 125126
27 Xue T, Zhang G H, Yang Y B. Thermal-stress analysis on several kinds of structures of TSV [J]. Microelectronics, 2015, 45: 820
27 薛 彤, 张国华, 杨轶博. 多种结构硅通孔热应力仿真分析 [J]. 微电子学, 2015, 45: 820
28 Liu W Y, Yu W S, Shen S P. Chemomechanical analysis for interfacial reactions between γ-TiAl alloy and glass-ceramic coating in micro/nano scale [J]. J. Am. Ceram. Soc., 2018, 101: 5675
29 Clemens H, Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys [J]. Adv. Eng. Mater., 2000, 2: 551
30 Wen Y F, Zeng X S, Hu Z F, et al. A comparative first-principles study of tetragonal TiAl and Ti4Nb3Al9 intermetallic compounds [J]. Intermetallics, 2018, 101: 72
31 Zhang W J, Reddy B V, Deevi S C. Physical properties of TiAl-base alloys [J]. Scr. Mater., 2001, 45: 645
32 Alfonsetti R, Lozzi L, Passacantando M, et al. XPS studies on SiO x thin films [J]. Appl. Surf. Sci., 1993, 70-71: 222
33 Chi M Y, Sun X N, Lozano-Blanco G, et al. XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments [J]. Appl. Surf. Sci., 2021, 570: 151147
34 Shi L, Jiang C P, Zhao R Y, et al. Effect of Al2O3 nanoparticles additions on wear resistance of plasma electrolytic oxidation coatings on TC4 alloys [J]. Ceram. Int., 2024, 50: 18484
35 Yan H J, Tai Z F, Wu L K, et al. Improved high-temperature oxidation resistance of TC4 alloy by electrodeposited SiO2 coating [J]. Corros. Commun., 2021, 3: 34
36 Lefez B, Boileau S, Nachbaur V, et al. Oxidation behavior of Beta21s titanium alloycoated with a SiO2-Sol-Gel [J]. SSRN Electronic Journal, 2022
37 Yan H J, Wu L K, Cao F H. Development of SiO2-based protective coatings on TiAl alloy [J]. Mater. China, 2022, 41: 345
37 严豪杰, 伍廉奎, 曹发和. TiAl合金表面SiO2防护涂层研究进展 [J]. 中国材料进展, 2022, 41: 345
38 Fernandes H R, Tulyaganov D U, Pascual M J, et al. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system [J]. J. Eur. Ceram. Soc., 2012, 32: 2283
39 Zhao L L, Li G Y, Zhang L Q, et al. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 oC [J]. Intermetallics, 2010, 18: 1586
40 Epifano E, Monceau D. Ellingham diagram: a new look at an old tool [J]. Corros. Sci., 2023, 217: 111113
41 Yan H J, Meng X Z, Zhang Q H, et al. High temperature oxidation performance of the electrodeposited SiO2 coating incorporated with Ni nanoparticle [J]. Corros. Sci., 2022, 205: 110455
[1] 江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
[2] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[3] 陈倩,辛丽,滕英元,朱圣龙,王福会. 氮化物涂层对钛合金抗循环氧化性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 7-12.
[4] 王东生 田宗军 陈志勇 沈理达 吴红艳 张平则 刘志东 徐重 黄因慧. TiAl合金表面抗高温氧化涂层研究[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[5] 金光熙; 乔利杰; 高克玮; 桥本健纪 ; 褚武扬 . Al60Mn13Ti25V2金属间化合物的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .
[6] 宋复斌; 张琦 . 常温腐蚀对Al-Si涂层循环氧化行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(3): 183-186 .
[7] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .
[8] 袁福河; 孙晓峰; 管恒荣 . 钴基高温合金的循环氧化行为研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 115-117 .
[9] 耿树江; 王福会; 朱圣龙 . 溅射纳米晶IN738合金涂层的抗循环氧化行为[J]. 中国腐蚀与防护学报, 2001, 21(6): 334-339 .
[10] 胡武生;李铁藩;沈嘉年. 几种Ni-Cr-Al墓低偏析高温合金的抗氧化性能研究[J]. 中国腐蚀与防护学报, 1996, 16(4): 293-297.