Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1507-1517     CSTR: 32134.14.1005.4537.2024.111      DOI: 10.11902/1005.4537.2024.111
  研究报告 本期目录 | 过刊浏览 |
基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究
翁硕1,2,3(), 孟超1, 罗陵华4, 袁奕雯5, 赵礼辉1,2,3, 冯金芝1,2,3
1.上海理工大学机械工程学院 上海 200093
2.机械工业汽车机械零部件强度与可靠性评价重点实验室 上海 200093
3.上海市新能源汽车可靠性评价公共技术平台 上海 200093
4.中国船舶集团公司第七一一研究所 上海 201108
5.上海市特种设备监督检验技术研究院 上海 200062
Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method
WENG Shuo1,2,3(), MENG Chao1, LUO Linghua4, YUAN Yiwen5, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3. Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
4. Research Institute of China State Shipbuilding Corporation, Shanghai 201108, China
5. Shanghai Institute of Special Equipment Supervision and Inspection Technology, Shanghai 200062, China
引用本文:

翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
Shuo WENG, Chao MENG, Linghua LUO, Yiwen YUAN, Lihui ZHAO, Jinzhi FENG. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1507-1517.

全文: PDF(6978 KB)   HTML
摘要: 

为合理阐明力-化学交互作用下AA7075-T651铝合金腐蚀损伤特征的演化规律,本研究采用元胞自动机法和力学数值仿真软件联合方法,模拟了铝合金在不同载荷水平下的腐蚀损伤演化过程,系统地探究了机械应力对材料腐蚀生长速率及形貌特征演化的影响。研究结果显示,相较于无外加载荷作用下的材料腐蚀,力-化学耦合作用下材料腐蚀损失的元胞数量、最大腐蚀深度或宽度均明显增大,且从腐蚀损伤特征的最大腐蚀深度/宽度比值随着载荷水平的增加逐渐上升可以看出,拉伸应力造成腐蚀坑在纵向上呈现出更快的生长趋势,进而造成应力集中系数增加,使得腐蚀损伤特征底部由弹性变形转变为塑性变形,最终加速了金属的腐蚀进程。

关键词 元胞自动机有限元分析AA7075-T651铝合金腐蚀损伤    
Abstract

The evolution of corrosion damage characteristics of AA7075-T651 Al-alloy under combined force-chemical interaction was clarified via a combination of cellular automaton method and mechanical numerical simulation software, aiming to simulate the evolution process of corrosion damage of Al-alloy under different load levels, and to revealing the effect of mechanical stress on the variation of corrosion growth rate and morphological characteristics evolution of the Al-alloy as well. The results show that compared with the corrosion of Al-alloy without external load, the number of cells lost due to the corrosion and the maximum corrosion depth or width under the action of force-chemical coupling are significantly increased, while the maximum ratio of corrosion depth to width of the corrosion damage characteristics are significantly increased. It can be seen that the ratio of depth to width gradually increases with the increase of load level. It can be seen that the tensile stress causes the corrosion pit to show a faster growth trend in the longitudinal direction, which in turn causes the stress concentration coefficient to increase, causing the bottom of the corrosion damage characteristic to change from elastic deformation to plastic deformation, ultimately accelerating the corrosion process of the Al-alloy.

Key wordscellular automata    finite element analysis    AA7075-T651 Al-alloy    corrosion damage
收稿日期: 2024-04-02      32134.14.1005.4537.2024.111
ZTFLH:  TG156  
基金资助:国家自然科学基金(52005336);国家市场监管总局创新人才计划(QNBJ202318)
通讯作者: 翁硕,E-mail:wengshuo@usst.edu.cn,研究方向为结构与材料可靠性评价及设计
Corresponding author: WENG Shuo,E-mail: wengshuo@usst.edu.cn
作者简介: 翁 硕,男,1988年生,博士,副教授
图1  AA7075-T651铝合金点蚀示意图
图2  元胞自动机的Von Neumann模型
SymbolRepresentative typeFree movement
MMetal substrateNo
AActive metalNo
BOxide filmNo
WElectrolyte solutionYes
DIntermediate productYes
LCorrosion productYes
表1  元胞自动机模型各元胞的类型
图3  元胞自动机空间模型示意图
图4  元胞自动机腐蚀演化规律示意图
ParameterValue
Pcorr0.3
PHyd10.3
PHyd20.4
Sed2
PdiffH0.5
PdiffA0.4
PdiffAH0.06
表2  元胞自动机模型参数概率
图5  元胞自动机有限元模型结构示意图
图6  腐蚀坑截面形状图[20]
图7  CA模型不同腐蚀坑模拟截面图
图8  CA模型腐蚀坑形貌变化图
图9  2024和7B04铝合金在24~192 h内的腐蚀坑截面图[23]
图10  不同腐蚀概率下腐蚀元胞数目变化对比图
图11  不同沉淀系数下腐蚀元胞数目变化对比图
图12  相同应力下不同模拟时间步数形貌对比图
图13  相同模拟时间步数下不同应力水平腐蚀形貌对比图
图14  CA模型中应力变化对腐蚀元胞数及深度、宽度、深宽比的影响
图15  模拟时间步数为200, 应力为200和500 MPa下腐蚀坑应力和应变图
1 Altuntaş G, Altuntaş O, Bostan B. Characterization of Al-7075/T651 alloy by RRA heat treatment and different pre-deformation effects [J]. Trans Indian Inst. Met., 2021, 74: 3025
2 Weng S, Yu J, Zhao L H, et al. Enhanced corrosion phenomenon of SAPH440 steels in 3.5wt.% NaCl solution by pre-strain deformation behavior [J]. J. Mater. Eng. Perform., 2022, 31: 5851
3 Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
3 (翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486)
4 Horner D A, Connolly B J, Zhou S, et al. Novel images of the evolution of stress corrosion cracks from corrosion pits [J]. Corros. Sci., 2011, 53: 3466
5 Qin H, Liu J, Shao Q X, et al. Corrosion behavior and cellular automata simulation of carbon steel in salt-spray environment [J]. npj Mater. Degrad., 2024, 8: 29
6 Zhang X Q, Teng Y X, Guo J. Application of cellular automata in the research of metal material corrosion [J]. Mater. Rep., 2023, 37: 21050078
6 (张喜庆, 滕莹雪, 郭 菁. 元胞自动机在金属材料腐蚀研究中的应用 [J]. 材料导报, 2023, 37: 21050078)
7 Chen M C, Wen Q Q. Cellular automata simulation of corrosion process for steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 68
7 (陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟 [J]. 中国腐蚀与防护学报, 2018, 38: 68)
doi: 10.11902/1005.4537.2017.003
8 Cui Y Y, Zhao Y Y. Simulation of aluminum alloy corrosion behavior based on cellular automaton method [J]. Corros. Prot., 2018, 39(10): 794
8 (崔艳雨, 赵沅沅. 基于元胞自动机法的铝合金腐蚀行为模拟 [J]. 腐蚀与防护, 2018, 39(10): 794)
9 Wang H, Lv G Z, Wang L, et al. Cellular automaton simulations of surface corrosion damage evolution [J]. Acta Aeronaut. Astronaut. Sin., 2008, 29(6): 1490
9 (王 慧, 吕国志, 王 乐 等. 金属表面腐蚀损伤演化过程的元胞自动机模拟 [J]. 航空学报, 2008, 29(6): 1490)
10 Guo D X, Ren K L, Wang Y C, et al. Three-dimensional cellular automata model for predicting local corrosion [J]. Mech. Eng., 2014, 36: 447
10 (郭东旭, 任克亮, 王燕昌 等. 金属局部腐蚀的三维元胞自动机模型 [J]. 力学与实践, 2014, 36: 447)
11 Di Caprio D, Vautrin-Ul C, Stafiej J, et al. Cellular automata approach for morphological evolution of localised corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 223
12 Fatoba O O, Leiva-Garcia R, Lishchuk S V, et al. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach [J]. Corros. Sci., 2018, 137: 83
13 Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
14 Gong K, Wu M, Liu X Y, et al. Nucleation and propagation of stress corrosion cracks: modeling by cellular automata and finite element analysis [J]. Mater. Today Commun., 2022, 33: 104886
15 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
15 (林朝晖, 明南希, 何 川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
doi: 10.11902/1005.4537.2020.061
16 Li B, Dong L H, Wang H D, et al. Research progress on corrosion fatigue of aerospace aluminum alloy [J]. Surf. Technol., 2021, 50(7): 106
16 (李 斌, 董丽虹, 王海斗 等. 航空航天铝合金腐蚀疲劳研究进展 [J]. 表面技术, 2021, 50(7): 106)
17 He L R, Yin Z P, Huang Q Q, et al. Simulation of local corrosion on metal surface with CA method [J]. J. Aeronaut. Mater., 2015, 35(2): 54
17 (何乐儒, 殷之平, 黄其青 等. 模拟金属表面局部腐蚀的CA方法 [J]. 航空材料学报, 2015, 35(2): 54)
doi: 10.11868/j.issn.1005-5053.2015.2.007
18 Wang Y, Shi H R. Simulation of pitting corrosion under stress based on cellular automata and finite element method [J]. J. Eng. Mater. Technol., 2024, 146: 021006
19 Reinoso-Burrows J C, Toro N, Cortés-Carmona M, et al. Cellular automata modeling as a tool in corrosion management [J]. Materials, 2023, 16: 6051
20 Gutman E M. Mechanochemistry of Materials [M]. Cambridge: Cambridge International Science Publishing, 1998
21 Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
22 Guo X Y, Kang J F, Zhu J S. 3D cellular automata–based numerical simulation of atmospheric corrosion process on weathering steel [J]. J. Mater. Civ. Eng., 2018, 30: 04018296
23 Zhu L Q, Gu A, Liu H C, et al. Study on characters of corrosion advancing edge of typical high strength aluminum alloys [J]. J. Aeronaut. Mater., 2008, 28(6): 61
23 (朱立群, 谷 岸, 刘慧丛 等. 典型高强铝合金材料的点腐蚀坑前缘特征的研究 [J]. 航空材料学报, 2008, 28(6): 61)
24 Guiso S, di Caprio D, de Lamare J, et al. Intergranular corrosion: comparison between experiments and cellular automata [J]. Corros. Sci., 2020, 177: 108953
25 Chen Z W, Sun L, Zhang W, et al. Corrosion behavior of marine structural steel in tidal zone based on wire beam electrode technology and partitioned cellular automata model [J]. Corros. Commun., 2022, 5: 87
26 Pérez-Brokate C F, di Caprio D, Féron D, et al. Pitting corrosion modelling by means of a stochastic cellular automata-based model [J]. Corros. Eng. Sci. Technol., 2017, 52: 605
27 Shafeek H, Soltan H A, Abdel-Aziz M H. Corrosion monitoring in pipelines with a computerized system [J]. Alexandria Eng. J., 2021, 60: 5771
[1] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[2] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[3] 魏欢欢, 郑东东, 陈晨, 张大伟, 王凯励. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[4] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[5] 陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
[6] 杨专钊, 刘道新, 张晓化. 含平底型腐蚀缺陷钢管剩余强度的有限元求解和实验验证[J]. 中国腐蚀与防护学报, 2013, 33(4): 339-346.
[7] 王刚,金平,谭晓明,王德. 海洋环境下7B04铝合金腐蚀损伤演化规律研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.
[8] 李磊; 李晓刚;肖葵;董超芳. 金属在湿大气环境下初期腐蚀行为的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2010, 30(2): 114-118.
[9] 刘祖铭 . 环境对LY12CZ铝合金典型螺接件疲劳性能的影响[J]. 中国腐蚀与防护学报, 2004, 24(5): 267-271 .