|
|
缺陷自预警涂层的触发机制及制备策略研究进展 |
李刚卿1, 刘茜2, 孙晓光1, 潘景龙2, 曹祥康2, 董泽华2( ) |
1.中车青岛四方机车车辆股份有限公司技术工程部 青岛 266111 2.华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074 |
|
Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure |
LI Gangqing1, LIU Xi2, SUN Xiaoguang1, PAN Jinglong2, CAO Xiangkang2, DONG Zehua2( ) |
1. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China 2. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
李刚卿, 刘茜, 孙晓光, 潘景龙, 曹祥康, 董泽华. 缺陷自预警涂层的触发机制及制备策略研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
Gangqing LI,
Xi LIU,
Xiaoguang SUN,
Jinglong PAN,
Xiangkang CAO,
Zehua DONG.
Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 540-552.
1 |
Habibiyan A, Ramezanzadeh B, Mahdavian M, et al. Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application [J]. Chem. Eng. J., 2020, 391: 123630
doi: 10.1016/j.cej.2019.123630
|
2 |
Nie Z Y, Liu J H, Zhang Y W, et al. Progress of sol-gel anti-corrosion coatings on metals [J]. Surf. Technol., 2015, 44(6): 75
|
2 |
聂志云, 刘继华, 张有为 等. 金属表面溶胶-凝胶防腐蚀涂层的研究进展 [J]. 表面技术, 2015, 44(6): 75
|
3 |
An K, Sui Y, Qing Y Q, et al. Synergistic reinforcement coating with anti-corrosion and UV aging resistance by filling modified CeO2 nanoflakes [J]. Colloid. Surf., 2021, 625A: 126904
|
4 |
Wu K Y, Chen Y X, Luo J, et al. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency [J]. J. Colloid Interface Sci., 2021, 600: 660
doi: 10.1016/j.jcis.2021.05.066
|
5 |
Haddadi S A, Hu S J, Ghaderi S, et al. Amino-functionalized MXene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel [J]. ACS Appl. Mater. Interfaces, 2021, 13: 42074
doi: 10.1021/acsami.1c13055
|
6 |
Da Silva Lopes T, Lopes T, Martins D, et al. Accelerated aging of anticorrosive coatings: Two-stage approach to the AC/DC/AC electrochemical method [J]. Prog. Org. Coat., 2020, 138: 105365
|
7 |
Zhang D P, Sun M M, Cao X K, et al. Progress in corrosion inhibitor evaluation and corrosion monitoring technology in oil recovery industries [J]. Surf. Technol., 2020, 49(11): 1
|
7 |
张德平, 孙苗苗, 曹祥康 等. 油气工业缓蚀剂评价与腐蚀监测技术进展 [J]. 表面技术, 2020, 49(11): 1
|
8 |
Fan Z, Hu M, Zhang K, et al. Review of on-line monitoring of oil and gas pipelines corrosion in acidic environment by acoustic emission technology [J]. Surf. Technol., 2019, 48(4): 245
|
8 |
范 舟, 胡 敏, 张 坤 等. 声发射在线监测酸性环境下油气管材腐蚀研究综述 [J]. 表面技术, 2019, 48(4): 245
|
9 |
Kopf L F, Tighe R C. Automated detection and quantification of the onset of undercoating corrosion using pulsed thermography [J]. Mater. Corros., 2023, 74: 777
|
10 |
Enikeev M R, Potemkin D I, Enikeeva L V, et al. Analysis of corrosion processes kinetics on the surface of metals [J]. Chem. Eng. J., 2020, 383: 123131
doi: 10.1016/j.cej.2019.123131
|
11 |
Ma L W, Wang J K, Ren C H, et al. Detection of corrosion inhibitor adsorption via a surface-enhanced Raman spectroscopy (SERS) silver nanorods tape sensor [J]. Sensor. Actuat., 2020, 321B: 128617
|
12 |
Zhang D W, Wang L T, Qian H C, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions [J]. J. Coat. Technol. Res., 2016, 13(1): 11
doi: 10.1007/s11998-015-9744-6
|
13 |
Li M, Liu W F, Zhang Q, et al. Mechanical force sensitive acrylic latex coating [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15156
doi: 10.1021/acsami.7b04154
|
14 |
Cao L, Wang Q, Wang W, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions [J]. ACS Appl. Mater. Interfaces, 2022, 14: 27168
doi: 10.1021/acsami.2c05048
|
15 |
Yoon S, Choi J H, Sung B J, et al. Mechanochromic and thermally reprocessable thermosets for autonomic damage reporting and self-healing coatings [J]. NPG Asia Mater., 2022, 14: 61
doi: 10.1038/s41427-022-00406-3
|
16 |
Yimkosol W, Dangkulwanich M. Finding the pKa values of a double-range indicator thymol blue in a remote learning activity [J]. J. Chem. Educ., 2021, 98: 3930
doi: 10.1021/acs.jchemed.1c00122
|
17 |
Cui W H, Chen Q, Jia R Y, et al. Several common mechanisms of color change reaction of phenolphthalein indicator [J]. Shandong Chem. Ind., 2018, 47(23): 90
|
17 |
崔文辉, 陈 强, 贾如琰 等. 酚酞指示剂变色反应的几种常见机理 [J]. 山东化工, 2018, 47(23): 90
|
18 |
Sousa I, Quevedo M C, Sushkova A, et al. Chitosan microspheres as carriers for pH-indicating species in corrosion sensing [J]. Macromol. Mater. Eng., 2020, 305: 1900662
doi: 10.1002/mame.v305.2
|
19 |
Lee T H, Song Y K, Park S H, et al. Dual stimuli responsive self-reporting material for chemical reservoir coating [J]. Appl. Surf. Sci., 2018, 434: 1327
doi: 10.1016/j.apsusc.2017.11.219
|
20 |
Zhang J, Frankel G S. Corrosion-sensing behavior of an acrylic-based coating system [J]. Corrosion, 1999, 55: 957
doi: 10.5006/1.3283932
|
21 |
Maia F, Tedim J, Bastos A C, et al. Active sensing coating for early detection of corrosion processes [J]. RSC. Adv., 2014, 4: 17780
doi: 10.1039/c4ra00826j
|
22 |
Augustyniak A, Tsavalas J, Ming W H. Early detection of steel corrosion via “Turn-On” fluorescence in smart epoxy coatings [J]. ACS Appl. Mater. Interfaces, 2009, 1: 2618
doi: 10.1021/am900527s
|
23 |
Zhou S K, Guo H L, Gu L. Research progress on design, preparation and application of fluorescent coatings [J]. Surf. Technol., 2021, 50(11): 30
|
23 |
周少魁, 郭宏磊, 顾 林. 荧光涂层的设计、制备与应用研究进展 [J]. 表面技术, 2021, 50(11): 30
|
24 |
Mchedlov-Petrossyan N O, Cheipesh T A, Roshal A D, et al. Aminofluoresceins versus fluorescein: peculiarity of fluorescence [J]. J. Phys. Chem., 2019, 123A: 8860
|
25 |
Wang Y, Wang K M, Shen G L, et al. A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin [J]. Talanta, 1997, 44: 1319
pmid: 18966869
|
26 |
Augustyniak A, Ming W H. Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings [J]. Prog. Org. Coat., 2011, 71: 406
doi: 10.1016/j.porgcoat.2011.04.013
|
27 |
Liu G, Wheat H G. Use of a fluorescent indicator in monitoring underlying corrosion on coated aluminum 2024-T4 [J]. J. Electrochem. Soc., 2009, 156: C160
doi: 10.1149/1.3078395
|
28 |
Bozkurt E, Onganer Y. Photophysical features of coumarin 120 in reverse micelles [J]. J. Mol. Struct., 2018, 1173: 490
doi: 10.1016/j.molstruc.2018.07.019
|
29 |
Hancock R D. The pyridyl group in ligand design for selective metal ion complexation and sensing [J]. Chem. Soc. Rev., 2013, 42: 1500
doi: 10.1039/c2cs35224a
pmid: 23092949
|
30 |
Li J, Jiang Z Y, Gan L Z, et al. Functionalized graphene/polymer composite coatings for autonomous early-warning of steel corrosion [J]. Compos. Commun., 2018, 9: 6
doi: 10.1016/j.coco.2018.04.002
|
31 |
Yan W T, Shi M Q, Dong C X, et al. Applications of tannic acid in membrane technologies: A review [J]. Adv. Colloid. Interface, 2020, 284: 102267
doi: 10.1016/j.cis.2020.102267
|
32 |
Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering [J]. Science, 2013, 341(6142): 154
doi: 10.1126/science.1237265
pmid: 23846899
|
33 |
Liu C B, Qian B, Hou P M, et al. Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings [J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429
doi: 10.1021/acsami.0c22642
|
34 |
Liu C B, Jin Z Y, Cheng L, et al. Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings [J]. Nanoscale, 2020, 12: 3194
doi: 10.1039/c9nr09221h
pmid: 31967166
|
35 |
Tian X L, Feng C, Zhao X H. Corrosion monitoring effect of rhodamine-ethylenediamine on copper relics under a protective coating [J]. ACS Omega., 2020, 5: 21679
doi: 10.1021/acsomega.0c02535
|
36 |
Li S M, Zhang H R, Liu J H. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024 [J]. Trans. Nonferr. Met. Soc. China, 2006, 16(suppl.1): S159
doi: 10.1016/S1003-6326(06)60166-0
|
37 |
Maia F, Tedim J, Bastos A C, et al. Nanocontainer-based corrosion sensing coating [J]. Nanotechnology, 2013, 24: 415502
doi: 10.1088/0957-4484/24/41/415502
|
38 |
Mata D, Scharnagl N, Lamaka S V, et al. Validating the early corrosion sensing functionality in poly (ether imide) coatings for enhanced protection of magnesium alloy AZ31 [J]. Corros. Sci., 2018, 140: 307
doi: 10.1016/j.corsci.2018.05.034
|
39 |
Fernine Y, Arrousse N, Haldhar R, et al. Synthesis and characterization of phenolphthalein derivatives, detailed theoretical DFT computation/molecular simulation, and prevention of AA2024-T3 corrosion in medium 3.5% NaCl [J]. J. Taiwan Inst. Chem. Eng., 2022, 140: 104556
doi: 10.1016/j.jtice.2022.104556
|
40 |
Wang J K, Huang Y, Ma L W, et al. Corrosion-sensing and self-healing dual-function coating based on 1,10-phenanthroline loaded urea formaldehyde microcapsules for carbon steel protection [J]. Colloid. Surf., 2022, 652A: 129855
|
41 |
Truc T A, Thuy T T, Oanh V K, et al. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel [J]. Surf. Interfaces, 2019, 14: 26
|
42 |
Liu J J, Li M, Luo C Y, et al. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence [J]. Chem. Eng. J., 2022, 431: 134162
doi: 10.1016/j.cej.2021.134162
|
43 |
Li W L, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings [J]. Adv. Mater., 2016, 28: 2189
doi: 10.1002/adma.v28.11
|
44 |
Zhang Y J, Dong J, Sun H X, et al. Solvatochromic coatings with self-cleaning property from palygorskite@polysiloxane/crystal violet lactone [J]. ACS Appl. Mater. Interfaces, 2016, 8: 27346
doi: 10.1021/acsami.6b09252
|
45 |
Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials [J]. Nature, 2009, 459(7243): 68
doi: 10.1038/nature07970
|
46 |
Lam J W Y, Luo J D, Peng H L, et al. Linear and hyperbranched polymers with high thermal stability and luminescence efficiency [J]. Chin. J. Polym. Sci., 2001, 19: 585
|
47 |
Li K T, Lin Y J, Lu C. Aggregation-induced emission for visualization in materials science [J]. Chem. Asian J., 2019, 14: 715
doi: 10.1002/asia.v14.6
|
48 |
Liang J, Tang B Z, Liu B. Specific light-up bioprobes based on AIEgen conjugates [J]. Chem. Soc. Rev., 2015, 44: 2798
doi: 10.1039/c4cs00444b
pmid: 25686761
|
49 |
Lu X C, Li W L, Sottos N R, et al. Autonomous damage detection in multilayered coatings via integrated aggregation-induced emission luminogens [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40361
doi: 10.1021/acsami.8b16454
|
50 |
Dhole G S, Gunasekaran G, Singh S K, et al. Smart corrosion sensing phenanthroline modified alkyd coatings [J]. Prog. Org. Coat., 2015, 89: 8
|
51 |
Dhole G S, Gunasekaran G, Baloji Naik R, et al. Modified epoxy coatings for corrosion detection [J]. Corrosion, 2017, 73: 326
doi: 10.5006/2089
|
52 |
Dhole G S, Gunasekaran G, Naik R, et al. Fluorescence based corrosion detecting epoxy coating [J]. Prog. Org. Coat., 2020, 138: 105425
|
53 |
Yuan K X, Peng Q H, Yuan D D, et al. A multifunctional polyurethane with solid-state and acid-base responsive fluorescent emission [J]. J. Lumin., 2020, 228: 117595
doi: 10.1016/j.jlumin.2020.117595
|
54 |
He X H, Hu L Q, Zou L S, et al. Enhanced fluorescence properties of flexible waterborne polyurethane films by blocking fluorescein isothiocyanate (FITC) [J]. Mater. Lett., 2021, 293: 129668
doi: 10.1016/j.matlet.2021.129668
|
55 |
Dhole G S, Gunasekaran G, Ghorpade T, et al. Smart acrylic coatings for corrosion detection [J]. Prog. Org. Coat., 2017, 110: 140
|
56 |
Bryant D E, Greenfield D. The use of fluorescent probes for the detection of under-film corrosion [J]. Prog. Org. Coat., 2006, 57: 416
doi: 10.1016/j.porgcoat.2006.09.027
|
57 |
Raps D, Hack T, Wehr J, et al. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024 [J]. Corros. Sci., 2009, 51: 1012
doi: 10.1016/j.corsci.2009.02.018
|
58 |
Roshan S, Dariani A A S, Mokhtari J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator [J]. Appl. Surf. Sci., 2018, 440: 880
doi: 10.1016/j.apsusc.2018.01.188
|
59 |
Wang J P, Song Y, Wang J K, et al. pH-responsive polymer coatings for reporting early stages of metal corrosion [J]. Macromol. Mater. Eng., 2017, 302: 1700128
doi: 10.1002/mame.v302.9
|
60 |
Martins R, Figueiredo J, Sushkova A, et al. “Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms [J]. Environ. Pollut., 2022, 302: 118973
doi: 10.1016/j.envpol.2022.118973
|
61 |
Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
|
61 |
叶三男, 王 培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
|
62 |
Fan D H, Liu X B, Qi K, et al. A smart-sensing coating based on dual-emission fluorescent Zr-MOF composite for autonomous warning of coating damage and aluminum corrosion [J]. Prog. Org. Coat., 2022, 172: 107150
|
63 |
Wang H, Fan Y, Tian L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion [J]. Mater. Lett., 2020, 265: 127419
doi: 10.1016/j.matlet.2020.127419
|
64 |
Galvão T L P, Sousa I, Wilhelm M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers [J]. Chem. Eng. J., 2018, 341: 526
doi: 10.1016/j.cej.2018.02.061
|
65 |
Liu C B, Wu H, Qiang Y J, et al. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties [J]. Corros. Sci., 2021, 184: 109355
doi: 10.1016/j.corsci.2021.109355
|
66 |
Exbrayat L, Salaluk S, Uebel M, et al. Nanosensors for monitoring early stages of metallic corrosion [J]. ACS Appl. Nano Mater., 2019, 2: 812
doi: 10.1021/acsanm.8b02045
|
67 |
Dieleman C D, Denissen P J, Garcia S J. Long-term active corrosion protection of damaged coated-AA2024-T3 by embedded electrospun inhibiting nanonetworks [J]. Adv. Mater. Interfaces, 2018, 5: 1800176
doi: 10.1002/admi.v5.12
|
68 |
Liu T, Zhang D W, Ma L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers [J]. Corros. Sci., 2022, 200: 110254
doi: 10.1016/j.corsci.2022.110254
|
69 |
Wang J K, Ma L W, Guo X, et al. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating [J]. Chem. Eng. J., 2022, 433: 134515
doi: 10.1016/j.cej.2022.134515
|
70 |
Dararatana N, Seidi F, Crespy D. pH-sensitive polymer conjugates for anticorrosion and corrosion sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10: 20876
doi: 10.1021/acsami.8b05775
|
71 |
Tao Z L, Cui J C, Qiu H X, et al. Microcapsule/silica dual-fillers for self-healing, self-reporting and corrosion protection properties of waterborne epoxy coatings [J]. Prog. Org. Coat., 2021, 159: 106394
|
72 |
Wang J P, Wang J K, Zhou Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core-shell nanostructures [J]. Macromol. Mater. Eng., 2018, 303: 1700616
doi: 10.1002/mame.v303.4
|
73 |
Taheri N, Sarabi A A, Roshan S. Investigation of intelligent protection and corrosion detection of epoxy-coated St-12 by redox-responsive microcapsules containing dual-functional 8-hydroxyquinoline [J]. Prog. Org. Coat., 2022, 172: 107073
|
74 |
Salaluk S, Auepattana-Aumrung K, Thongchaivetcharat K, et al. Nanonetwork composite coating for sensing and corrosion inhibition [J]. Adv. Mater. Interfaces, 2020, 7: 2001073
doi: 10.1002/admi.v7.20
|
75 |
Fan Y, Wang J K, Ma L W, et al. Research progress of photothermally triggered self-healing coatings [J]. Surf. Technol., 2020, 49(2): 135
|
75 |
范 益, 王金科, 马菱薇 等. 光热自修复涂层的研究进展 [J]. 表面技术, 2020, 49(2): 135
|
76 |
Beach M, Davey T, Subramanian P, et al. Self-healing organic coatings–Fundamental chemistry to commercial application [J]. Prog. Org. Coat., 2023, 183: 107759
|
77 |
Ahmed S, Bae M J, Jeong S, et al. Design of eco-friendly self-healing polymers containing hindered urea-based dynamic reversible bonds [J]. ACS Appl. Polym. Mater., 2022, 4: 8136
doi: 10.1021/acsapm.2c01087
|
78 |
Montano V, Wempe M M B, Does S M H, et al. Controlling healing and toughness in polyurethanes by branch-mediated tube dilation [J]. Macromolecules, 2019, 52: 8067
doi: 10.1021/acs.macromol.9b01554
pmid: 31736512
|
79 |
Fu X, Du W B, Dou H X, et al. Nanofiber composite coating with self-healing and active anticorrosive performances [J]. ACS Appl. Mater. Interfaces, 2021, 13: 57880
doi: 10.1021/acsami.1c16052
|
80 |
Zhang F, Ju P F, Pan M Q, et al. Self-healing mechanisms in smart protective coatings: A review [J]. Corros. Sci., 2018, 144: 74
doi: 10.1016/j.corsci.2018.08.005
|
81 |
Wessling B. Scientific and commercial breakthrough for organic metals [J]. Synth. Met., 1997, 85: 1313
doi: 10.1016/S0379-6779(97)80254-8
|
82 |
Liu C B, Cheng L, Qian B, et al. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors [J]. Nanoscale, 2022, 14: 8429
doi: 10.1039/d2nr01406h
pmid: 35642496
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|