Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 540-552     CSTR: 32134.14.1005.4537.2023.246      DOI: 10.11902/1005.4537.2023.246
  综合评述 本期目录 | 过刊浏览 |
缺陷自预警涂层的触发机制及制备策略研究进展
李刚卿1, 刘茜2, 孙晓光1, 潘景龙2, 曹祥康2, 董泽华2()
1.中车青岛四方机车车辆股份有限公司技术工程部 青岛 266111
2.华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure
LI Gangqing1, LIU Xi2, SUN Xiaoguang1, PAN Jinglong2, CAO Xiangkang2, DONG Zehua2()
1. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China
2. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

李刚卿, 刘茜, 孙晓光, 潘景龙, 曹祥康, 董泽华. 缺陷自预警涂层的触发机制及制备策略研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 540-552.
Gangqing LI, Xi LIU, Xiaoguang SUN, Jinglong PAN, Xiangkang CAO, Zehua DONG. Research Progress on Trigger Mechanism and Preparation Strategy of Coatings of Defect Self-disclosure[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 540-552.

全文: PDF(11619 KB)   HTML
摘要: 

有机涂层防护是抑制海上平台、远洋货轮、油气管道、铁路设施等大型装备腐蚀的重要手段之一,然而在紫外、高低温或盐雾环境下有机涂层的老化降解在所难免。而如何及早发现涂层缺陷,实现装备装置涂层的预防性维修并确定其维修更换周期,对于提升防腐蚀成本效益比具有重要价值。基于此,针对涂层的老化缺陷实现早期发现和预警成为了新型功能涂层的研究热点之一。本文首先系统地总结了缺陷自预警涂层不同的触发机制,梳理了各类自预警涂层的传感机制、优缺点、影响荧光/颜色响应的因素;其次介绍了两种自预警涂层的制备策略,一是接枝指示基团修饰涂层制备新型本征自预警聚合物,二是使用纳米容器负载指示剂作为外援功能性填料,并对比分析两种策略的差异与局限性,重点阐明纳米负载容器在自预警涂层中起到的关键作用,以及不同类型自预警涂层与纳米容器的适配关系。最后本文还回顾了在自预警涂层基础上实现自预警自修复双功能涂层的研究进展,并展望了自预警涂层未来的发展前景,旨在为自预警涂层的设计与应用提供理论指导。

关键词 涂层老化自预警荧光探针颜色变化自修复    
Abstract

Organic coating is widely applied to hinder the corrosion of large-scale engineering facilities, such as offshore platforms, oceangoing freighters, oil and gas pipelines and rail equipment etc. However, coatings are often severely deteriorated in harsh service environments, thus leading to corrosion of metallic substrates, which may not only threaten the service safety of the engineering facilities but also cause significant economic losses. Moreover, the coating degradation is an unavoidable and spontaneous process, and it should be mentioned especially that some hidden coating defects are hard to be detected. Therefore, it has become a research hotspot to develop coatings with function of defect self-disclosure for early detection and maintenance of defects by applying color reaction or fluorescence probe technology. In this review, we summarize the latest advances in coatings of defect self-disclosure, as well as the relevant trigger mechanisms and preparation strategies. First, the coatings of defect self-disclosure can be classified as corrosion-triggered type and mechanical-triggered type based on their mechanisms. Then the corrosion-triggered coatings may be subdivided into pH response and metal ion response according to the fluorescence change or color reaction. Moreover, it sorts out the diverse characteristics of those coatings such as their sensing principles, influencing factors, advantages and drawbacks, and fluorescence/coloration performances. Second, two kinds of preparation strategies for coatings of defect self-disclosure are introduced, one is grafting indicator groups onto polymer chain segments to prepare coatings of intrinsic defect self-disclosure, and the other is to incorporate nano-containers loaded with indicator as the functional filler. The differences and limitations of these strategies are compared and analyzed, further focusing on the key role of nanocontainers and their compatibility with different types of coatings of defect self-disclosure. In addition, the corrosion inhibitors, healing agents, and polymer microcapsules in the coatings of defect self-disclosure can not only realize defect indication but also endow their corrosion self-healing performance for boosting their application in the industrial field. Finally, it is envisioned the development prospect of coatings of defect self-disclosure to provide theoretical guidance for the design and application of the coatings of defect self-disclosure.

Key wordscoating aging    self-reporting    fluorescent probe    color change    self-healing
收稿日期: 2023-08-10      32134.14.1005.4537.2023.246
ZTFLH:  TG174.4  
基金资助:国家重点研发计划(2020YFE0204900);中车重点科研项目(2021CDB292)
通讯作者: 董泽华,E-mail: zhdong@hust.edu.cn,研究方向为腐蚀与防护
Corresponding author: DONG Zehua, E-mail: zhdong@hust.edu.cn
作者简介: 李刚卿,男,1971年生,硕士,教授级高级工程师(共同一作)
刘 茜,女,1999年生,硕士生(共同一作)
图1  酚酞变色机理[17]
图2  荧光素[24],FD1[26]和香豆素120[28]的荧光机理
图3  菲啰啉[34]和单宁酸[32]的络合机理
图4  DCF颜色变化原理,空白环氧涂层与含10%DCF胶囊涂层划痕预警对比,含15%DCF胶囊涂层对不同划痕深度的预警和机械损伤颜色变化示意图[43]
图5  螺吡喃修饰涂层变色机理[45]
图6  化学修饰丙烯酸涂层的合成以及含AMP 0%、2.5%和3%涂层在3.5%NaCl溶液浸泡前后对比[55]
图7  MSN-PC的制备以及空白环氧涂层与含4% MSN-PC环氧涂层的盐雾实验[69]
Reacting speciesColor indicatorContainerSubstrateChangeCoating
Mechanically-DCF + aminePU/UFSteelRedEpoxy[43]
triggered-CVL + SiO2PMMASteelBlueWEP[71]
-BPF/HPS/TPEPU/UFGlassColors are related to crack depthEpoxy[49]
FluorescenceH+FD1-Al alloyBright orangeEpoxy[26]
responseH+Coumarin 120-Al alloyCHEQEpoxy[27]
OH-Coumarin

PDVB- grafting-

P (DVB- co-AA)

SteelCHEFEpoxy[72]
Fe3+FD1-SteelBright yellowEpoxy[22]
Fe3+Rhodamine B derivativeSilica nanocapsulesSteel

Bright

yellow

Poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate)[66]
Fe3+8-HQPAN1SteelCHEFEpoxy[73]
Al3+8-HQ-5-sulfonic acid-Al alloyCHEFEpoxy[56]
Al3+Phenylfluorone-Al alloyCHEQAcrylic coating[36]
Al3+Rhodamine BZr-MOFAl alloyGreenEpoxy[62]
Cu2+Rhodamine-ethylenediamine-Cu alloy

Bright

red

Epoxy[35]
Cu2+RHSZIF-8Cu alloyRose red/ CHEFEpoxy[63]
ColorOH-PhenolphthaleinSilica nanocapsulesAl alloyPinkWater-soluble acrylic urethane[64]
response
OH-PhenolphthaleinP (MMA-co-BA)SteelPinkAcrylic coating[74]
Fe2+1,10-phenanthrolineSilica nanocapsules/ChitosanSteelRedWaterborne Epoxy[34]
Fe2+1,10-phenanthroline-5-amineGraphene oxideSteelRedPolyurethane[30]
表1  部分自预警涂层颜色指示剂及其变化应用
图8  PDVB-graft-P(DVB-co-AA)合成以及包含空白涂层和智能涂层的铜合金和铝合金在3.5%NaCl溶液中浸泡6 h的表面[72]
图9  H2PNL20(含PNL)和H2PNL20MBT5 (含PNL + MBT )的涂层浸泡在3.5%NaCl 溶液中[74]
图10  CVL变色机理和WEP智能涂层原理图[71]
1 Habibiyan A, Ramezanzadeh B, Mahdavian M, et al. Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application [J]. Chem. Eng. J., 2020, 391: 123630
doi: 10.1016/j.cej.2019.123630
2 Nie Z Y, Liu J H, Zhang Y W, et al. Progress of sol-gel anti-corrosion coatings on metals [J]. Surf. Technol., 2015, 44(6): 75
2 聂志云, 刘继华, 张有为 等. 金属表面溶胶-凝胶防腐蚀涂层的研究进展 [J]. 表面技术, 2015, 44(6): 75
3 An K, Sui Y, Qing Y Q, et al. Synergistic reinforcement coating with anti-corrosion and UV aging resistance by filling modified CeO2 nanoflakes [J]. Colloid. Surf., 2021, 625A: 126904
4 Wu K Y, Chen Y X, Luo J, et al. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency [J]. J. Colloid Interface Sci., 2021, 600: 660
doi: 10.1016/j.jcis.2021.05.066
5 Haddadi S A, Hu S J, Ghaderi S, et al. Amino-functionalized MXene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel [J]. ACS Appl. Mater. Interfaces, 2021, 13: 42074
doi: 10.1021/acsami.1c13055
6 Da Silva Lopes T, Lopes T, Martins D, et al. Accelerated aging of anticorrosive coatings: Two-stage approach to the AC/DC/AC electrochemical method [J]. Prog. Org. Coat., 2020, 138: 105365
7 Zhang D P, Sun M M, Cao X K, et al. Progress in corrosion inhibitor evaluation and corrosion monitoring technology in oil recovery industries [J]. Surf. Technol., 2020, 49(11): 1
7 张德平, 孙苗苗, 曹祥康 等. 油气工业缓蚀剂评价与腐蚀监测技术进展 [J]. 表面技术, 2020, 49(11): 1
8 Fan Z, Hu M, Zhang K, et al. Review of on-line monitoring of oil and gas pipelines corrosion in acidic environment by acoustic emission technology [J]. Surf. Technol., 2019, 48(4): 245
8 范 舟, 胡 敏, 张 坤 等. 声发射在线监测酸性环境下油气管材腐蚀研究综述 [J]. 表面技术, 2019, 48(4): 245
9 Kopf L F, Tighe R C. Automated detection and quantification of the onset of undercoating corrosion using pulsed thermography [J]. Mater. Corros., 2023, 74: 777
10 Enikeev M R, Potemkin D I, Enikeeva L V, et al. Analysis of corrosion processes kinetics on the surface of metals [J]. Chem. Eng. J., 2020, 383: 123131
doi: 10.1016/j.cej.2019.123131
11 Ma L W, Wang J K, Ren C H, et al. Detection of corrosion inhibitor adsorption via a surface-enhanced Raman spectroscopy (SERS) silver nanorods tape sensor [J]. Sensor. Actuat., 2020, 321B: 128617
12 Zhang D W, Wang L T, Qian H C, et al. Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions [J]. J. Coat. Technol. Res., 2016, 13(1): 11
doi: 10.1007/s11998-015-9744-6
13 Li M, Liu W F, Zhang Q, et al. Mechanical force sensitive acrylic latex coating [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15156
doi: 10.1021/acsami.7b04154
14 Cao L, Wang Q, Wang W, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions [J]. ACS Appl. Mater. Interfaces, 2022, 14: 27168
doi: 10.1021/acsami.2c05048
15 Yoon S, Choi J H, Sung B J, et al. Mechanochromic and thermally reprocessable thermosets for autonomic damage reporting and self-healing coatings [J]. NPG Asia Mater., 2022, 14: 61
doi: 10.1038/s41427-022-00406-3
16 Yimkosol W, Dangkulwanich M. Finding the pKa values of a double-range indicator thymol blue in a remote learning activity [J]. J. Chem. Educ., 2021, 98: 3930
doi: 10.1021/acs.jchemed.1c00122
17 Cui W H, Chen Q, Jia R Y, et al. Several common mechanisms of color change reaction of phenolphthalein indicator [J]. Shandong Chem. Ind., 2018, 47(23): 90
17 崔文辉, 陈 强, 贾如琰 等. 酚酞指示剂变色反应的几种常见机理 [J]. 山东化工, 2018, 47(23): 90
18 Sousa I, Quevedo M C, Sushkova A, et al. Chitosan microspheres as carriers for pH-indicating species in corrosion sensing [J]. Macromol. Mater. Eng., 2020, 305: 1900662
doi: 10.1002/mame.v305.2
19 Lee T H, Song Y K, Park S H, et al. Dual stimuli responsive self-reporting material for chemical reservoir coating [J]. Appl. Surf. Sci., 2018, 434: 1327
doi: 10.1016/j.apsusc.2017.11.219
20 Zhang J, Frankel G S. Corrosion-sensing behavior of an acrylic-based coating system [J]. Corrosion, 1999, 55: 957
doi: 10.5006/1.3283932
21 Maia F, Tedim J, Bastos A C, et al. Active sensing coating for early detection of corrosion processes [J]. RSC. Adv., 2014, 4: 17780
doi: 10.1039/c4ra00826j
22 Augustyniak A, Tsavalas J, Ming W H. Early detection of steel corrosion via “Turn-On” fluorescence in smart epoxy coatings [J]. ACS Appl. Mater. Interfaces, 2009, 1: 2618
doi: 10.1021/am900527s
23 Zhou S K, Guo H L, Gu L. Research progress on design, preparation and application of fluorescent coatings [J]. Surf. Technol., 2021, 50(11): 30
23 周少魁, 郭宏磊, 顾 林. 荧光涂层的设计、制备与应用研究进展 [J]. 表面技术, 2021, 50(11): 30
24 Mchedlov-Petrossyan N O, Cheipesh T A, Roshal A D, et al. Aminofluoresceins versus fluorescein: peculiarity of fluorescence [J]. J. Phys. Chem., 2019, 123A: 8860
25 Wang Y, Wang K M, Shen G L, et al. A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin [J]. Talanta, 1997, 44: 1319
pmid: 18966869
26 Augustyniak A, Ming W H. Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings [J]. Prog. Org. Coat., 2011, 71: 406
doi: 10.1016/j.porgcoat.2011.04.013
27 Liu G, Wheat H G. Use of a fluorescent indicator in monitoring underlying corrosion on coated aluminum 2024-T4 [J]. J. Electrochem. Soc., 2009, 156: C160
doi: 10.1149/1.3078395
28 Bozkurt E, Onganer Y. Photophysical features of coumarin 120 in reverse micelles [J]. J. Mol. Struct., 2018, 1173: 490
doi: 10.1016/j.molstruc.2018.07.019
29 Hancock R D. The pyridyl group in ligand design for selective metal ion complexation and sensing [J]. Chem. Soc. Rev., 2013, 42: 1500
doi: 10.1039/c2cs35224a pmid: 23092949
30 Li J, Jiang Z Y, Gan L Z, et al. Functionalized graphene/polymer composite coatings for autonomous early-warning of steel corrosion [J]. Compos. Commun., 2018, 9: 6
doi: 10.1016/j.coco.2018.04.002
31 Yan W T, Shi M Q, Dong C X, et al. Applications of tannic acid in membrane technologies: A review [J]. Adv. Colloid. Interface, 2020, 284: 102267
doi: 10.1016/j.cis.2020.102267
32 Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering [J]. Science, 2013, 341(6142): 154
doi: 10.1126/science.1237265 pmid: 23846899
33 Liu C B, Qian B, Hou P M, et al. Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings [J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429
doi: 10.1021/acsami.0c22642
34 Liu C B, Jin Z Y, Cheng L, et al. Synthesis of nanosensors for autonomous warning of damage and self-repairing in polymeric coatings [J]. Nanoscale, 2020, 12: 3194
doi: 10.1039/c9nr09221h pmid: 31967166
35 Tian X L, Feng C, Zhao X H. Corrosion monitoring effect of rhodamine-ethylenediamine on copper relics under a protective coating [J]. ACS Omega., 2020, 5: 21679
doi: 10.1021/acsomega.0c02535
36 Li S M, Zhang H R, Liu J H. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024 [J]. Trans. Nonferr. Met. Soc. China, 2006, 16(suppl.1): S159
doi: 10.1016/S1003-6326(06)60166-0
37 Maia F, Tedim J, Bastos A C, et al. Nanocontainer-based corrosion sensing coating [J]. Nanotechnology, 2013, 24: 415502
doi: 10.1088/0957-4484/24/41/415502
38 Mata D, Scharnagl N, Lamaka S V, et al. Validating the early corrosion sensing functionality in poly (ether imide) coatings for enhanced protection of magnesium alloy AZ31 [J]. Corros. Sci., 2018, 140: 307
doi: 10.1016/j.corsci.2018.05.034
39 Fernine Y, Arrousse N, Haldhar R, et al. Synthesis and characterization of phenolphthalein derivatives, detailed theoretical DFT computation/molecular simulation, and prevention of AA2024-T3 corrosion in medium 3.5% NaCl [J]. J. Taiwan Inst. Chem. Eng., 2022, 140: 104556
doi: 10.1016/j.jtice.2022.104556
40 Wang J K, Huang Y, Ma L W, et al. Corrosion-sensing and self-healing dual-function coating based on 1,10-phenanthroline loaded urea formaldehyde microcapsules for carbon steel protection [J]. Colloid. Surf., 2022, 652A: 129855
41 Truc T A, Thuy T T, Oanh V K, et al. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel [J]. Surf. Interfaces, 2019, 14: 26
42 Liu J J, Li M, Luo C Y, et al. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence [J]. Chem. Eng. J., 2022, 431: 134162
doi: 10.1016/j.cej.2021.134162
43 Li W L, Matthews C C, Yang K, et al. Autonomous indication of mechanical damage in polymeric coatings [J]. Adv. Mater., 2016, 28: 2189
doi: 10.1002/adma.v28.11
44 Zhang Y J, Dong J, Sun H X, et al. Solvatochromic coatings with self-cleaning property from palygorskite@polysiloxane/crystal violet lactone [J]. ACS Appl. Mater. Interfaces, 2016, 8: 27346
doi: 10.1021/acsami.6b09252
45 Davis D A, Hamilton A, Yang J L, et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials [J]. Nature, 2009, 459(7243): 68
doi: 10.1038/nature07970
46 Lam J W Y, Luo J D, Peng H L, et al. Linear and hyperbranched polymers with high thermal stability and luminescence efficiency [J]. Chin. J. Polym. Sci., 2001, 19: 585
47 Li K T, Lin Y J, Lu C. Aggregation-induced emission for visualization in materials science [J]. Chem. Asian J., 2019, 14: 715
doi: 10.1002/asia.v14.6
48 Liang J, Tang B Z, Liu B. Specific light-up bioprobes based on AIEgen conjugates [J]. Chem. Soc. Rev., 2015, 44: 2798
doi: 10.1039/c4cs00444b pmid: 25686761
49 Lu X C, Li W L, Sottos N R, et al. Autonomous damage detection in multilayered coatings via integrated aggregation-induced emission luminogens [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40361
doi: 10.1021/acsami.8b16454
50 Dhole G S, Gunasekaran G, Singh S K, et al. Smart corrosion sensing phenanthroline modified alkyd coatings [J]. Prog. Org. Coat., 2015, 89: 8
51 Dhole G S, Gunasekaran G, Baloji Naik R, et al. Modified epoxy coatings for corrosion detection [J]. Corrosion, 2017, 73: 326
doi: 10.5006/2089
52 Dhole G S, Gunasekaran G, Naik R, et al. Fluorescence based corrosion detecting epoxy coating [J]. Prog. Org. Coat., 2020, 138: 105425
53 Yuan K X, Peng Q H, Yuan D D, et al. A multifunctional polyurethane with solid-state and acid-base responsive fluorescent emission [J]. J. Lumin., 2020, 228: 117595
doi: 10.1016/j.jlumin.2020.117595
54 He X H, Hu L Q, Zou L S, et al. Enhanced fluorescence properties of flexible waterborne polyurethane films by blocking fluorescein isothiocyanate (FITC) [J]. Mater. Lett., 2021, 293: 129668
doi: 10.1016/j.matlet.2021.129668
55 Dhole G S, Gunasekaran G, Ghorpade T, et al. Smart acrylic coatings for corrosion detection [J]. Prog. Org. Coat., 2017, 110: 140
56 Bryant D E, Greenfield D. The use of fluorescent probes for the detection of under-film corrosion [J]. Prog. Org. Coat., 2006, 57: 416
doi: 10.1016/j.porgcoat.2006.09.027
57 Raps D, Hack T, Wehr J, et al. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024 [J]. Corros. Sci., 2009, 51: 1012
doi: 10.1016/j.corsci.2009.02.018
58 Roshan S, Dariani A A S, Mokhtari J. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator [J]. Appl. Surf. Sci., 2018, 440: 880
doi: 10.1016/j.apsusc.2018.01.188
59 Wang J P, Song Y, Wang J K, et al. pH-responsive polymer coatings for reporting early stages of metal corrosion [J]. Macromol. Mater. Eng., 2017, 302: 1700128
doi: 10.1002/mame.v302.9
60 Martins R, Figueiredo J, Sushkova A, et al. “Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms [J]. Environ. Pollut., 2022, 302: 118973
doi: 10.1016/j.envpol.2022.118973
61 Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
61 叶三男, 王 培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
62 Fan D H, Liu X B, Qi K, et al. A smart-sensing coating based on dual-emission fluorescent Zr-MOF composite for autonomous warning of coating damage and aluminum corrosion [J]. Prog. Org. Coat., 2022, 172: 107150
63 Wang H, Fan Y, Tian L M, et al. Colorimetric/fluorescent dual channel sensitive coating for early detection of copper alloy corrosion [J]. Mater. Lett., 2020, 265: 127419
doi: 10.1016/j.matlet.2020.127419
64 Galvão T L P, Sousa I, Wilhelm M, et al. Improving the functionality and performance of AA2024 corrosion sensing coatings with nanocontainers [J]. Chem. Eng. J., 2018, 341: 526
doi: 10.1016/j.cej.2018.02.061
65 Liu C B, Wu H, Qiang Y J, et al. Design of smart protective coatings with autonomous self-healing and early corrosion reporting properties [J]. Corros. Sci., 2021, 184: 109355
doi: 10.1016/j.corsci.2021.109355
66 Exbrayat L, Salaluk S, Uebel M, et al. Nanosensors for monitoring early stages of metallic corrosion [J]. ACS Appl. Nano Mater., 2019, 2: 812
doi: 10.1021/acsanm.8b02045
67 Dieleman C D, Denissen P J, Garcia S J. Long-term active corrosion protection of damaged coated-AA2024-T3 by embedded electrospun inhibiting nanonetworks [J]. Adv. Mater. Interfaces, 2018, 5: 1800176
doi: 10.1002/admi.v5.12
68 Liu T, Zhang D W, Ma L W, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers [J]. Corros. Sci., 2022, 200: 110254
doi: 10.1016/j.corsci.2022.110254
69 Wang J K, Ma L W, Guo X, et al. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating [J]. Chem. Eng. J., 2022, 433: 134515
doi: 10.1016/j.cej.2022.134515
70 Dararatana N, Seidi F, Crespy D. pH-sensitive polymer conjugates for anticorrosion and corrosion sensing [J]. ACS Appl. Mater. Interfaces, 2018, 10: 20876
doi: 10.1021/acsami.8b05775
71 Tao Z L, Cui J C, Qiu H X, et al. Microcapsule/silica dual-fillers for self-healing, self-reporting and corrosion protection properties of waterborne epoxy coatings [J]. Prog. Org. Coat., 2021, 159: 106394
72 Wang J P, Wang J K, Zhou Q, et al. Adaptive polymeric coatings with self-reporting and self-healing dual functions from porous core-shell nanostructures [J]. Macromol. Mater. Eng., 2018, 303: 1700616
doi: 10.1002/mame.v303.4
73 Taheri N, Sarabi A A, Roshan S. Investigation of intelligent protection and corrosion detection of epoxy-coated St-12 by redox-responsive microcapsules containing dual-functional 8-hydroxyquinoline [J]. Prog. Org. Coat., 2022, 172: 107073
74 Salaluk S, Auepattana-Aumrung K, Thongchaivetcharat K, et al. Nanonetwork composite coating for sensing and corrosion inhibition [J]. Adv. Mater. Interfaces, 2020, 7: 2001073
doi: 10.1002/admi.v7.20
75 Fan Y, Wang J K, Ma L W, et al. Research progress of photothermally triggered self-healing coatings [J]. Surf. Technol., 2020, 49(2): 135
75 范 益, 王金科, 马菱薇 等. 光热自修复涂层的研究进展 [J]. 表面技术, 2020, 49(2): 135
76 Beach M, Davey T, Subramanian P, et al. Self-healing organic coatings–Fundamental chemistry to commercial application [J]. Prog. Org. Coat., 2023, 183: 107759
77 Ahmed S, Bae M J, Jeong S, et al. Design of eco-friendly self-healing polymers containing hindered urea-based dynamic reversible bonds [J]. ACS Appl. Polym. Mater., 2022, 4: 8136
doi: 10.1021/acsapm.2c01087
78 Montano V, Wempe M M B, Does S M H, et al. Controlling healing and toughness in polyurethanes by branch-mediated tube dilation [J]. Macromolecules, 2019, 52: 8067
doi: 10.1021/acs.macromol.9b01554 pmid: 31736512
79 Fu X, Du W B, Dou H X, et al. Nanofiber composite coating with self-healing and active anticorrosive performances [J]. ACS Appl. Mater. Interfaces, 2021, 13: 57880
doi: 10.1021/acsami.1c16052
80 Zhang F, Ju P F, Pan M Q, et al. Self-healing mechanisms in smart protective coatings: A review [J]. Corros. Sci., 2018, 144: 74
doi: 10.1016/j.corsci.2018.08.005
81 Wessling B. Scientific and commercial breakthrough for organic metals [J]. Synth. Met., 1997, 85: 1313
doi: 10.1016/S0379-6779(97)80254-8
82 Liu C B, Cheng L, Qian B, et al. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors [J]. Nanoscale, 2022, 14: 8429
doi: 10.1039/d2nr01406h pmid: 35642496
[1] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[2] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[3] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[4] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[5] 张勇,樊伟杰,张泰峰,王安东,陈跃良. 涂层自修复技术研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 299-305.
[6] 陈廷益, 路文, 李文芳, 付业琦. AA6063铝合金Zr黑灰色转化膜及其自修复性能[J]. 中国腐蚀与防护学报, 2015, 35(2): 177-182.
[7] 徐克,肖书彬,刘艳辉,阮国岭. 铝合金微弧氧化膜在高温盐水中的 耐蚀性能研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 17-22.
[8] 邓洪达; 张三平; 杨丽霞 . 不同地区大气曝晒对涂层耐蚀性能的影响I.丙烯酸聚氨酯涂层[J]. 中国腐蚀与防护学报, 2007, 27(5): 274-278 .
[9] 张三平; 邓洪达; 杨丽霞 . 不同地区大气曝晒对涂层耐蚀性能的影响Ⅱ. 氟碳涂层[J]. 中国腐蚀与防护学报, 2007, 27(5): 279-282 .
[10] 闫建中; 吴荫顺; 李久青 . 316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究[J]. 中国腐蚀与防护学报, 2000, 20(6): 355-360 .