Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 462-470     CSTR: 32134.14.1005.4537.2023.101      DOI: 10.11902/1005.4537.2023.101
  研究报告 本期目录 | 过刊浏览 |
CSA-OPC基修补材料的耐海水腐蚀性及其机理研究
李国新(), 陈华湘, 伍扬帆
西安建筑科技大学材料科学与工程学院 西安 710055
Corrosion Resistance and Mechanism of CSA-OPC Based Repair Materials in Artificial Seawaters
LI Guoxin(), CHEN Huaxiang, WU Yangfan
School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

李国新, 陈华湘, 伍扬帆. CSA-OPC基修补材料的耐海水腐蚀性及其机理研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 462-470.
Guoxin LI, Huaxiang CHEN, Yangfan WU. Corrosion Resistance and Mechanism of CSA-OPC Based Repair Materials in Artificial Seawaters[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 462-470.

全文: PDF(5223 KB)   HTML
摘要: 

采用实验室加速腐蚀模拟实验,研究硫铝酸盐水泥-普通硅酸盐水泥基修补材料(CSA-OPC体系)在NaCl、NaCl + Na2SO4、NaCl + Na2SO4 + MgCl2腐蚀溶液以及干-湿循环耦合作用下,其质量、抗压强度、粘结强度及Cl-含量的变化规律,并用X射线衍射(XRD)和扫描电子显微镜(SEM)进行微观表征,探究不同OPC掺量下的CSA-OPC体系的耐海水腐蚀性能及其机理,揭示海洋环境中不同腐蚀性离子间的交互作用。结果表明:在NaCl、NaCl + Na2SO4、NaCl + Na2SO4 + MgCl2腐蚀溶液环境下,适量OPC的掺入能明显改善CSA的耐海水腐蚀性能,当OPC掺量为20%~30%时,CSA-OPC体系的质量变化、抗压强度、粘结强度、Cl-结合能力最佳,Cl-进入体系通过生成Friedel's盐被固化,SO42-会抑制Cl-的结合,Mg2+会消耗更多OH-,降低Cl-的结合率。

关键词 海洋潮汐区离子耦合腐蚀修补材料硫铝酸盐水泥普通硅酸盐水泥    
Abstract

Several sulfoaluminate cement-ordinary Portland cement-based repair materials (CSA-OPC) were prepared, then their corrosion resistance in artificial seawaters containing NaCl, NaCl+Na2SO4, NaCl + Na2SO4 + MgCl2 respectively were assessed via dry-wet cycle test, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The study focuses on the evolution of mass, compressive strength, bond strength and Cl- content of the CSA-OPC with the variation of OPC content and corrosion process. The results show that in the test conditions with solutions of NaCl, NaCl + Na2SO4, NaCl + Na2SO4 + MgCl2, an appropriate amount of OPC incorporation can significantly improve the corrosion resistance of CSA in artificial seawaters. When the content of OPC is 20%-30%, the mass change, compressive strength, bond strength and Cl- combination ability of CSA-OPC are the best. The Cl- infiltrated into the CSA-OPC materials are trapped through the formation of Friedel's salt, while the SO42- may inhibit the combination of Cl-, and Mg2+ may reduce the combination rate of Cl- by consuming more OH-.

Key wordsocean tidal area    ion coupled erosion    repair material    sulphoaluminate cement    ordinary Portland cement
收稿日期: 2023-04-04      32134.14.1005.4537.2023.101
ZTFLH:  TU525  
通讯作者: 李国新,E-mail:liguoxin@xauat.edu.cn,研究方向为新型水泥基材料
Corresponding author: LI Guoxin, E-mail: liguoxin@xauat.edu.cn
作者简介: 李国新,男,1975年生,博士,教授
MaterialCaOAl2O3SiO2Fe2O3SO3MgOK2ONa2OTiO2Loss
CSA42.2536.466.562.288.921.840.180.240.580.69
OPC61.235.8422.323.152.002.020.390.15-2.90
表1  CSA与OPC的化学组成 (mass fraction / %)
Material

S

m2·kg-1

t0

min

t1

min

Flexural strength / MPaCompressive strength / MPa
1 d3 d7 d28 d1 d3 d7 d28 d
CSA42634554.80-6.50-36-49.20-
OPC34563115-5.80-9.20-23.50-49.60
表2  CSA与OPC的性能参数
NumberBinding materialSandW/BWater reducer
CSAOPC
CSA1010.3500.004
90%CSA-10%OPC0.9000.10010.3500.004
80%CSA-20%OPC0.8000.20010.3500.004
70%CSA-30%OPC0.7000.30010.3500.004
60%CSA-40%OPC0.6000.40010.3500.004
表3  砂浆实验配合比
SolutionNaClNa2SO4MgCl2·6H2OCaCl2KClNaHCO3KBrc(Cl-)
B24.534.095.201.170.690.200.1017.76
N146.46------88.82
N+S146.4620.45-----88.82
N+S+M131.5220.4526----88.82
表4  腐蚀溶液化学成分 (g/L)
图1  Cl-测试取样示意图
图2  CSA-OPC体系在3种腐蚀溶液中进行干-湿循环实验不同周次后的质量变化
图3  CSA-OPC体系在3种腐蚀溶液中进行干-湿循环实验不同周次后的抗压强度
图4  CSA-OPC体系在3种腐蚀溶液中进行干-湿循环实验不同周次后的粘结强度
图5  CSA-OPC体系在3种腐蚀溶液中进行干-湿循环实验不同周次后的总Cl-含量
图6  CSA-OPC体系在3种腐蚀溶液中进行干-湿循环实验90周次后的Cl-结合率
图7  80%CSA-20%OPC体系与70%CSA-30%OPC体系在几种腐蚀溶液中进行干-湿循环实验不同周次后的XRD谱
图8  80%CSA-20%OPC体系在NaCl腐蚀溶液中进行干-湿循环实验不同周次后的微观形貌
图9  80%CSA-20%OPC体系在NaCl + Na2SO4腐蚀溶液中进行干-湿循环实验不同周次后的微观形貌
图10  70%CSA-30%OPC体系在NaCl + Na2SO4 + MgCl2腐蚀溶液中进行干-湿循环实验不同周次后的微观形貌
1 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
1 李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 87
2 Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
2 刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42: 135
3 Han X Q. Effect of coupling of seawater and dry-wet cycling on the resistance of concrete to chloride penetration[D]. Hangzhou: Zhejiang University, 2019
3 韩学强. 海水和干湿循环耦合作用对混凝土抗氯离子渗透的影响[D]. 杭州: 浙江大学, 2019
4 Zhou P. Effects of external components on the microstructure of cement-based cement paste under seawater erosion[D]. Wuhan: Wuhan University of Technology, 2020
4 周 鹏. 海水侵蚀环境下外掺组分对水泥基胶凝浆体微结构的影响[D]. 武汉: 武汉理工大学, 2020
5 Shi Z G, Geiker M R, Lothenbach B, et al. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cem. Concr. Compos., 2017, 78: 73
doi: 10.1016/j.cemconcomp.2017.01.002
6 Zhang X J. The microstructure formation and evolution of C-S-H gel in cement paste under the attack of sulfate in weak alkaline[D]. Hefei: Anhui Jianzhu University, 2019
6 张晓佳. 弱碱环境下硫酸盐侵蚀水泥石中C-S-H凝胶结构的形成与演变[D]. 合肥: 安徽建筑大学, 2019
7 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect[J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
7 侯保荣, 张 盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31: 1326
8 Zhang Z D, Scherer G W. Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils[J]. Cem. Concr. Compos., 2020, 111: 103625
doi: 10.1016/j.cemconcomp.2020.103625
9 Jiang X L. Study on the Cl- binding capacity of sulphoaluminate cement with Cl- incorporation and its evolution during service[D]. Shenzhen: Shenzhen University, 2019
9 江雪雷. 硫铝酸盐水泥对内掺Cl-的固结能力及在服役过程中演化规律的研究[D]. 深圳: 深圳大学, 2019
10 Huang Y Q. Research on the influence of seawater on the properties of sulphoaluminate cement concrete[D]. Wuhan: Wuhan University of Technology, 2016
10 黄有强. 海水对硫铝酸盐水泥混凝土性能的影响研究[D]. 武汉: 武汉理工大学, 2016
11 Zhang J J, Ye C B, Tan H B, et al. Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature[J]. Constr. Build. Mater., 2020, 251: 118869
doi: 10.1016/j.conbuildmat.2020.118869
12 Zhang J J, Li G X, Ye W T, et al. Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement[J]. Constr. Build. Mater., 2018, 186: 1144
doi: 10.1016/j.conbuildmat.2018.08.008
13 Li G X, Bai Z H, Zhang G, et al. Study on properties and degradation mechanism of calcium sulphoaluminate cement-ordinary Portland cement binary repair material under seawater erosion[J]. Case Stud. Constr. Mater., 2022, 17: e01440
14 Gong H. Effect of multiple ions on chloride ion transport in mortar under marine environment[D]. Harbin: Harbin Institute of Technology, 2019
14 龚 豪. 海洋环境下多种离子对氯离子在砂浆中传输的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019
15 Zou D J, Qin S S, Liu T J, et al. Chloride ion diffusion in cement mortar in multi-ion solutions with various ions[J]. J. Chin. Ceram. Soc., 2020, 48: 1817
15 邹笃建, 覃珊珊, 刘铁军 等. 多离子溶液浸泡环境下氯离子在砂浆中的扩散性能[J]. 硅酸盐学报, 2020, 48: 1817
16 Bertola F, Gastaldi D, Irico S, et al. Behavior of blends of CSA and Portland cements in high chloride environment[J]. Constr. Build. Mater., 2020, 262: 120852
doi: 10.1016/j.conbuildmat.2020.120852
17 Zang W J. Study on the interaction of cementitious materials and various aggressive media in the South China Sea environment[D]. Nanjing: Southeast University, 2018
17 臧文洁. 南海环境多种腐蚀性介质与水泥基材料的交互作用研究[D]. 南京: 东南大学, 2018
18 Yuan J, Liu Y, Tan Z C, et al. Investigating the failure process of concrete under the coupled actions between sulfate attack and drying-wetting cycles by using X-ray CT[J]. Constr. Build. Mater., 2016, 108: 129
doi: 10.1016/j.conbuildmat.2016.01.040
19 Li W W, Jiang Z L, Lu M Y, et al. Effects of seawater, NaCl, and Na2SO4 solution mixing on hydration process of cement paste[J]. J. Mater. Civ. Eng., 2021, 33: 04021057
20 Tang S W, Yuan J H, Cai R J, et al. Continuous monitoring for leaching of calcium sulfoaluminate cement pastes incorporated with ZnCl2 under the attacks of chloride and sulfate[J]. Chemosphere, 2019, 223: 91
doi: 10.1016/j.chemosphere.2019.02.047
21 Gao M, Liu J H, Wu A X, et al. Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment[J]. J. Cent. South Univ. (Sci. Technol.), 2016, 47: 2776
21 高 萌, 刘娟红, 吴爱祥 等. 典型氯盐环境中富水充填材料腐蚀及劣化机理[J]. 中南大学学报(自然科学版), 2016, 47: 2776
22 Park S, Jeong Y, Moon J, et al. Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes[J]. J. Build. Eng., 2021, 34: 101880
23 Cheng S K, Shui Z H, Gao X, et al. Degradation mechanisms of Portland cement mortar under seawater attack and drying-wetting cycles[J]. Constr. Build. Mater., 2020, 230: 116934
doi: 10.1016/j.conbuildmat.2019.116934
24 Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: a fresh look: Part 2. Proposed mechanisms[J]. Cem. Concr. Res., 2003, 33: 341
doi: 10.1016/S0008-8846(02)00958-4
25 Li G X, Wang W Z, Zhang G. Effects of slag on the degradation mechanism of ordinary Portland cement-calcium aluminate cement-gypsum ternary binder under the multiple erosive ions[J]. Constr. Build. Mater., 2022, 324: 126661
doi: 10.1016/j.conbuildmat.2022.126661
26 Cheng S K, Shui Z H, Gao X, et al. Degradation progress of Portland cement mortar under the coupled effects of multiple corrosive ions and drying-wetting cycles[J]. Cem. Concr. Compos., 2020, 111: 103629
doi: 10.1016/j.cemconcomp.2020.103629
27 Cai G C, Zhao J. Application of sulphoaluminate cement to repair deteriorated concrete members in chloride ion rich environment-A basic experimental investigation of durability properties[J]. KSCE J. Civ. Eng., 2016, 20: 2832
doi: 10.1007/s12205-016-0130-4
28 Cheng S K, Shui Z H, Sun T, et al. Synergistic effects of sulfate and magnesium ions on chloride diffusion behaviors of Portland cement mortar[J]. Constr. Build. Mater., 2019, 229: 116878
doi: 10.1016/j.conbuildmat.2019.116878
[1] 罗伟文, 季韬, 林魁. 水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.