|
|
20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究 |
袁磊1, 谢新2, 陈明辉1( ), 李烽杰1, 王福会1 |
1.东北大学 沈阳材料科学国家研究中心联合研究分部 沈阳 110819 2.上海船舶工艺研究所 (中国船舶集团有限公司第十一研究所) 上海 200032 |
|
Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C |
YUAN Lei1, XIE Xin2, CHEN Minghui1( ), LI Fengjie1, WANG Fuhui1 |
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China |
引用本文:
袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
YUAN Lei,
XIE Xin,
CHEN Minghui,
LI Fengjie,
WANG Fuhui.
Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 890-895.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.373
或
https://www.jcscp.org/CN/Y2023/V43/I4/890
|
1 |
Cheng H F, Hu Y N. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China [J]. Bioresour. Technol., 2010, 101: 3816
doi: 10.1016/j.biortech.2010.01.040
|
2 |
Chand Malav L, Yadav K K, Gupta N, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities [J]. J. Cleaner Prod., 2020, 277: 123227
doi: 10.1016/j.jclepro.2020.123227
|
3 |
Ding Y, Zhao J, Liu J W, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization [J]. J. Cleaner Prod., 2021, 293: 126144
doi: 10.1016/j.jclepro.2021.126144
|
4 |
Zhai W, Yang B, Zhang S H, et al. Study on high temperature chlorination corrosion of metallic materials on the waste incineration boilers [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 450: 012006
|
5 |
Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
|
5 |
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
|
6 |
Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
doi: 10.1016/j.corsci.2021.109592
|
7 |
Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste [J]. Waste Manage., 2015, 37: 26
doi: 10.1016/j.wasman.2014.11.010
pmid: 25535103
|
8 |
Zhang X J, Liu H, Chen T Z, et al. Alleviation of thermal corrosion caused by molten ash on heat-exchange tubes in MSW incinerators: effects of Ni-, Co-, Fe-based HVOF coatings [J]. Proc. Combust. Inst., 2021, 38: 5453
doi: 10.1016/j.proci.2020.06.150
|
9 |
Chen J, Ninomiya Y, Naganuma H, et al. Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators [J]. Fuel Process. Technol., 2016, 141: 216
doi: 10.1016/j.fuproc.2015.08.040
|
10 |
Pérez F J, Castañeda S I, Hierro M P, et al. Comparative study of micro- and nano-structured coatings for high-temperature oxidation in steam atmospheres [J]. Oxid. Met., 2014, 81: 227
doi: 10.1007/s11085-013-9447-2
|
11 |
Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 ℃ [J]. Corros. Sci., 2020, 169: 108599
doi: 10.1016/j.corsci.2020.108599
|
12 |
Mi F Y, Zhu S L. Long-term high temperature oxidation and hot corrosion behavior of an enamel coating on γ-TiAl intermetallics at 700 ℃ [J]. Corros. Sci. Prot. Technol., 2015, 27: 254
|
12 |
米丰毅, 朱圣龙. 搪瓷涂层700 ℃长期抗高温氧化和热腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 254
|
13 |
Li F J, Chen M H, Wang Q C, et al. Effect of Al2O3 content on microstructure and oxidation behavior of silicate enamel coatings on a Ni-based superalloy at 1000 ℃ [J]. Ceram. Int., 2022, 48: 25445
doi: 10.1016/j.ceramint.2022.05.222
|
14 |
Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
doi: 10.1016/j.corsci.2013.04.041
|
15 |
Wang X, Chen M H, Zhu S L, et al. Oxidation behavior of glass-based composite thermal barrier coating on K417G superalloy with a NiCoCrAlY bond coat at 1000 ℃ [J]. Surf. Coat. Technol., 2015, 270: 314
doi: 10.1016/j.surfcoat.2015.02.014
|
16 |
Shen M L, Zhu S L, Wang F H. Oxidation behavior of bilayered ceramic particle-reinforced enamel composite coating on nickel-based superalloy K38G at 1000 ℃ [J]. Corros. Sci. Prot. Technol., 2012, 24: 10
|
16 |
沈明礼, 朱圣龙, 王福会. 镍基高温合金上双层搪瓷-陶瓷复合涂层1000 ℃氧化机理 [J]. 腐蚀科学与防护技术, 2012, 24: 10
|
17 |
Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
doi: 10.1016/j.corsci.2017.08.012
|
18 |
Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
doi: 10.1016/j.conbuildmat.2018.10.123
|
19 |
Soundrapandian C, Bharati S, Basu D, et al. Studies on novel bioactive glasses and bioactive glass-nano-HAp composites suitable for coating on metallic implants [J]. Ceram. Int., 2011, 37: 759
doi: 10.1016/j.ceramint.2010.10.025
|
20 |
Oliver J A N, Su Y C, Lu X N, et al. Bioactive glass coatings on metallic implants for biomedical applications [J]. Bioact. Mater., 2019, 4: 261
|
21 |
Shao G X. Enamel [M]. Beijing: Light Industry Press, 1983: 360
|
21 |
邵规贤. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
|
22 |
Wu M Y, Chen M H, Zhu S L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
doi: 10.1016/j.surfcoat.2015.11.026
|
23 |
Wen R C, Lu G W. Bubble structure─the unique structure of enamel coating [J]. Glass Enamel, 1989, 17(6): 29
|
23 |
闻瑞昌, 卢桂文. 气泡结构—搪瓷层的独特结构 [J]. 玻璃与搪瓷, 1989, 17(6): 29
|
24 |
Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
|
25 |
Goursat A G, Smeltzer W W. Kinetics and morphological development of the oxide scale on iron at high temperatures in oxygen at low pressure [J]. Oxid. Met., 1973, 6: 101
doi: 10.1007/BF00614658
|
26 |
Schaeffer H A. Oxygen and silicon diffusion-controlled processes in vitreous silica [J]. J. Non-Cryst. Solids, 1980, 38/39: 545
|
27 |
Schaeffer H A. Diffusion-controlled processes in glass forming melts [J]. J. Non-Cryst. Solids, 1984, 67: 19
doi: 10.1016/0022-3093(84)90138-8
|
28 |
Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implica-tions of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|