Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 890-895     CSTR: 32134.14.1005.4537.2022.373      DOI: 10.11902/1005.4537.2022.373
  研究报告 本期目录 | 过刊浏览 |
20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究
袁磊1, 谢新2, 陈明辉1(), 李烽杰1, 王福会1
1.东北大学 沈阳材料科学国家研究中心联合研究分部 沈阳 110819
2.上海船舶工艺研究所 (中国船舶集团有限公司第十一研究所) 上海 200032
Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C
YUAN Lei1, XIE Xin2, CHEN Minghui1(), LI Fengjie1, WANG Fuhui1
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China
全文: PDF(7090 KB)   HTML
摘要: 

设计了一种用于20钢表面的搪瓷涂层,研究了基体与搪瓷涂层在400 ℃下恒温氧化1000 h和表面涂覆氯盐200 h的腐蚀行为。结果表明,搪瓷涂层呈非晶态,致密平整,与基体结合良好。在长时间的实验中未出现开裂或剥落行为,具有很高的热稳定性以及耐蚀性,为20钢基体提供了有效的防护。

关键词 搪瓷涂层20钢恒温氧化氯盐腐蚀    
Abstract

A novel enamel coating was prepared on 20 steel, then the oxidation and NaCl deposit induced corrosion of the steel without and with enamel coating were studied in air at 400 ℃ for 1000 and 200 h respectively. It is revealed that the prepared enamel coating is compact, amorphous, and can be well combined with the substrate. There are no cracks and spallation of enamel coatings was observed after corrosion tests. The enamel coating has high thermal stability and corrosion resistance, which provides effective protection for the 20 steel substrate.

Key wordsenamel coating    20 steel    oxidation    chlorine salt corrosion
收稿日期: 2022-11-29      32134.14.1005.4537.2022.373
ZTFLH:  TG172  
通讯作者: 陈明辉,E-mail: mhchen@mail.neu.edu.cn,研究方向为高温涂层、防腐自润滑   
Corresponding author: CHEN Minghui, E-mail: mhchen@mail.neu.edu.cn   
作者简介: 袁磊,男,1997年生,硕士生

引用本文:

袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 890-895.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.373      或      https://www.jcscp.org/CN/Y2023/V43/I4/890

图1  制备态搪瓷涂层的表面和截面形貌以及XRD谱
图2  不带及带有搪瓷涂层的20钢在400 ℃下的氧化动力学曲线
图3  20钢基体氧化不同时间后背散射扫描像
图4  400 ℃下氧化1000 h后搪瓷涂层微观表征
图5  不带及带有搪瓷涂层的20钢在400 oC下表面沉积NaCl时增重曲线
图6  20钢表面沉积NaCl时400 °C下腐蚀后的形貌
图7  带搪瓷涂层的20钢在表面沉积NaCl时腐蚀200 h后微观表征
1 Cheng H F, Hu Y N. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China [J]. Bioresour. Technol., 2010, 101: 3816
doi: 10.1016/j.biortech.2010.01.040
2 Chand Malav L, Yadav K K, Gupta N, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities [J]. J. Cleaner Prod., 2020, 277: 123227
doi: 10.1016/j.jclepro.2020.123227
3 Ding Y, Zhao J, Liu J W, et al. A review of China's municipal solid waste (MSW) and comparison with international regions: management and technologies in treatment and resource utilization [J]. J. Cleaner Prod., 2021, 293: 126144
doi: 10.1016/j.jclepro.2021.126144
4 Zhai W, Yang B, Zhang S H, et al. Study on high temperature chlorination corrosion of metallic materials on the waste incineration boilers [J]. IOP Conf. Ser.: Earth Environ. Sci., 2020, 450: 012006
5 Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
5 王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
6 Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
doi: 10.1016/j.corsci.2021.109592
7 Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste [J]. Waste Manage., 2015, 37: 26
doi: 10.1016/j.wasman.2014.11.010 pmid: 25535103
8 Zhang X J, Liu H, Chen T Z, et al. Alleviation of thermal corrosion caused by molten ash on heat-exchange tubes in MSW incinerators: effects of Ni-, Co-, Fe-based HVOF coatings [J]. Proc. Combust. Inst., 2021, 38: 5453
doi: 10.1016/j.proci.2020.06.150
9 Chen J, Ninomiya Y, Naganuma H, et al. Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators [J]. Fuel Process. Technol., 2016, 141: 216
doi: 10.1016/j.fuproc.2015.08.040
10 Pérez F J, Castañeda S I, Hierro M P, et al. Comparative study of micro- and nano-structured coatings for high-temperature oxidation in steam atmospheres [J]. Oxid. Met., 2014, 81: 227
doi: 10.1007/s11085-013-9447-2
11 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 ℃ [J]. Corros. Sci., 2020, 169: 108599
doi: 10.1016/j.corsci.2020.108599
12 Mi F Y, Zhu S L. Long-term high temperature oxidation and hot corrosion behavior of an enamel coating on γ-TiAl intermetallics at 700 ℃ [J]. Corros. Sci. Prot. Technol., 2015, 27: 254
12 米丰毅, 朱圣龙. 搪瓷涂层700 ℃长期抗高温氧化和热腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2015, 27: 254
13 Li F J, Chen M H, Wang Q C, et al. Effect of Al2O3 content on microstructure and oxidation behavior of silicate enamel coatings on a Ni-based superalloy at 1000 ℃ [J]. Ceram. Int., 2022, 48: 25445
doi: 10.1016/j.ceramint.2022.05.222
14 Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
doi: 10.1016/j.corsci.2013.04.041
15 Wang X, Chen M H, Zhu S L, et al. Oxidation behavior of glass-based composite thermal barrier coating on K417G superalloy with a NiCoCrAlY bond coat at 1000 ℃ [J]. Surf. Coat. Technol., 2015, 270: 314
doi: 10.1016/j.surfcoat.2015.02.014
16 Shen M L, Zhu S L, Wang F H. Oxidation behavior of bilayered ceramic particle-reinforced enamel composite coating on nickel-based superalloy K38G at 1000 ℃ [J]. Corros. Sci. Prot. Technol., 2012, 24: 10
16 沈明礼, 朱圣龙, 王福会. 镍基高温合金上双层搪瓷-陶瓷复合涂层1000 ℃氧化机理 [J]. 腐蚀科学与防护技术, 2012, 24: 10
17 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
doi: 10.1016/j.corsci.2017.08.012
18 Yin K, Yang Y, Frank Cheng Y. Permeability of coal tar enamel coating to cathodic protection current on pipelines [J]. Constr. Build. Mater., 2018, 192: 20
doi: 10.1016/j.conbuildmat.2018.10.123
19 Soundrapandian C, Bharati S, Basu D, et al. Studies on novel bioactive glasses and bioactive glass-nano-HAp composites suitable for coating on metallic implants [J]. Ceram. Int., 2011, 37: 759
doi: 10.1016/j.ceramint.2010.10.025
20 Oliver J A N, Su Y C, Lu X N, et al. Bioactive glass coatings on metallic implants for biomedical applications [J]. Bioact. Mater., 2019, 4: 261
21 Shao G X. Enamel [M]. Beijing: Light Industry Press, 1983: 360
21 邵规贤. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
22 Wu M Y, Chen M H, Zhu S L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
doi: 10.1016/j.surfcoat.2015.11.026
23 Wen R C, Lu G W. Bubble structure─the unique structure of enamel coating [J]. Glass Enamel, 1989, 17(6): 29
23 闻瑞昌, 卢桂文. 气泡结构—搪瓷层的独特结构 [J]. 玻璃与搪瓷, 1989, 17(6): 29
24 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
25 Goursat A G, Smeltzer W W. Kinetics and morphological development of the oxide scale on iron at high temperatures in oxygen at low pressure [J]. Oxid. Met., 1973, 6: 101
doi: 10.1007/BF00614658
26 Schaeffer H A. Oxygen and silicon diffusion-controlled processes in vitreous silica [J]. J. Non-Cryst. Solids, 1980, 38/39: 545
27 Schaeffer H A. Diffusion-controlled processes in glass forming melts [J]. J. Non-Cryst. Solids, 1984, 67: 19
doi: 10.1016/0022-3093(84)90138-8
28 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implica-tions of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
[1] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[2] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[3] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[4] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[5] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[6] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[7] 金光熙; 乔利杰; 高克玮; 桥本健纪 ; 褚武扬 . Al60Mn13Ti25V2金属间化合物的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .
[8] 欧阳礼; 颜肖慈; 余晓冬 . 脂肪胺的电子结构与缓蚀性能关系的研究[J]. 中国腐蚀与防护学报, 2003, 23(6): 367-369 .