Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 828-836     CSTR: 32134.14.1005.4537.2022.325      DOI: 10.11902/1005.4537.2022.325
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
缝隙腐蚀内部微区离子浓度监测的研究进展
白一涵1, 张航1, 朱泽洁1(), 王疆瑛1, 曹发和2
1.中国计量大学材料与化学学院 杭州 310018
2.中山大学材料学院 广州 510006
Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior
BAI Yihan1, ZHANG Hang1, ZHU Zejie1(), WANG Jiangying1, CAO Fahe2
1.School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
2.School of Materials Science, Sun Yat-sen University, Guangzhou 510006, China
全文: PDF(3891 KB)   HTML
摘要: 

缝隙腐蚀早期缝隙内部微区化学组分的变化与缝隙腐蚀的发生发展过程密切相关。本文介绍了缝隙腐蚀的基本原理及其影响因素,综述了近年来缝隙腐蚀过程中缝隙内部微区离子浓度监测的研究进展,包括固态离子选择性电极技术、荧光分子原位监测法、取样分析法以及数值计算模拟的相关工作;同时简要介绍了采用微型电化学传感器结合扫描电化学显微镜 (SECM) 的电位响应模式,对不锈钢缝隙腐蚀早期缝隙内部微区离子浓度原位监测的相关工作,展望了其在金属材料缝隙腐蚀早期腐蚀机理研究中的应用。

关键词 缝隙腐蚀微型电化学传感器扫描电化学显微镜    
Abstract

In the early stage of crevice corrosion, the change of micro-chemical environment inside the crevice are closely related to the occurrence and development of crevice corrosion. This work briefly introduced the basic principles and influencing factors of crevice corrosion. Then the research progress in monitoring the ion concentration variation inside the crevice during recent years were summarized, including the in situ chemical imaging of solid-state ion-selective electrodes and fluorescence molecular in situ monitoring method, sampling analysis method and numerical calculation simulation. In addition, research work of micro-electrochemical sensors combined with SECM in the measurement of the ion concentration variation of micro-areas inside the crevice of stainless steel by our group is also introduced. Future applications of this technique in crevice corrosion are highlighted.

Key wordscrevice corrosion    microelectrochemical sensor    scanning electrochemical microscopy
收稿日期: 2022-10-21      32134.14.1005.4537.2022.325
ZTFLH:  TG174  
基金资助:国家自然科学基金(52001301);浙江省属高校基本科研业务费(2022YW45)
通讯作者: 朱泽洁,E-mail: zejiezhu@cjlu.edu.cn,研究方向为扫描电化学显微镜,电化学传感器,电化学腐蚀   
Corresponding author: ZHU Zejie, E-mail: zejiezhu@cjlu.edu.cn   
作者简介: 白一涵,女,1998年生,硕士生
朱泽洁,中国计量大学,材料与化学学院,讲师,硕士生导师。2019 年毕业于浙江大学化学系,获得博士学 位,长期从事金属腐蚀表面原位空间电化学/化学成像研究工作,研究主要围绕电位响应型超微电极、次微 米超微电极、双管超微电极的制备及其在金属材料局部腐蚀行为研究中的应用展开。获得2018 年度浙江 省化学会创新奖。发表SCI 论文10 余篇,授权发明专利2 项。主持国家自然科学基金青年基金项目1 项、 浙江省基础公益研究计划项目1项。2016 年获得全国腐蚀电化学及测试方法学术交流会优秀论文奖。

引用本文:

白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
BAI Yihan, ZHANG Hang, ZHU Zejie, WANG Jiangying, CAO Fahe. Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 828-836.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.325      或      https://www.jcscp.org/CN/Y2023/V43/I4/828

图1  缝隙腐蚀的腐蚀行为示意图[13]
图2  缝隙腐蚀萌生阶段缝内金属的电位分布示意图[20]
图3  Fe在0.5 mol/L Na2SO4 (a=0.7 mm) 溶液中缝隙内部的pH分布图[34]
图4  N80碳钢在1.65% NaCl CO2饱和溶液中,含与不含600 mg/L HAc缝隙内外的pH随时间演化图[35]
图5  感光板上随时间变化的光学和荧光显微照片[38]
图6  高锰奥氏体不锈钢在0.01 mol/L NaCl (pH=3) 溶液中,缝隙腐蚀的总电流、pH和Cl-浓度随时间演化图[38]
图7  316L型不锈钢在2 mol/L KNO3溶液中缝隙内阳离子色谱图[40]
图8  304不锈钢在不同位置坐标处的pH随时间演化曲线[41]
图9  缝隙内溶液pH随时间的演化过程[43]
图10  201不锈钢在1 mol/L NaCl溶液 (pH=4.00,缝隙宽度为500 μm) 中,探针距离缝口不同位置处pH随时间的演化图
图11  201不锈钢在1 mol/L NaCl溶液 (pH=4.00) 中,不同缝隙宽度下缝隙内底部pH随时间演化图
图12  201不锈钢在1 mol/L NaCl (pH=4.00) 溶液中,缝隙内部不同位置处Cl-浓度随时间的演化图
1 Yan L, Song G L, Wang Z M, et al. Crevice corrosion of steel rebar in chloride-contaminated concrete [J]. Constr. Build. Mater., 2021, 296: 123587
doi: 10.1016/j.conbuildmat.2021.123587
2 Huang X, Zhou K, Ye Q Z, et al. Crevice corrosion behaviors of CoCrMo alloy and stainless steel 316L artificial joint materials in physiological saline [J]. Corros. Sci., 2022, 197: 110075
doi: 10.1016/j.corsci.2021.110075
3 Ilic E, Pardo A, Hauert R, et al. Silicon corrosion in neutral media: The influence of confined geometries and crevice corrosion in simulated physiological solutions [J]. J. Electrochem. Soc., 2019, 166: C125
doi: 10.1149/2.0241906jes
4 Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
5 Xu W C, Deng Y, Zhang B B, et al. Crevice corrosion of U75V high-speed rail steel with varying crevice gap size by in-situ monitoring [J]. J. Mater. Res. Technol., 2022, 16: 1856
doi: 10.1016/j.jmrt.2021.12.116
6 Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
7 Lu L, Li X G. Corrosion products of reverse crevice corrosion of copper [J]. Int. J. Miner. Metall. Mater., 2011, 18: 320
doi: 10.1007/s12613-011-0441-x
8 Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
9 Xu X Y, Liu S M, Liu Y, et al. Corrosion of stainless steel valves in a reverse osmosis system: Analysis of corrosion products and metal loss [J]. Eng. Fail. Anal., 2019, 105: 40
doi: 10.1016/j.engfailanal.2019.06.026
10 Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
11 Evans U R. The electrochemical character of corrosion [J]. J. Inst. Met., 1923, 30: 239
12 Fontana M G, Greene N D, McDonald D D. Corrosion engineering [J]. J. Electrochem. Soc., 1979, 126: 232C
13 Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt. % NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
14 Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
14 张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展[J]. 表面技术, 2019, 48(11): 114
15 Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
doi: 10.1016/j.corsci.2017.08.028
16 Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
17 Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
doi: 10.1016/j.corsci.2017.08.005
18 Shojaei E, Mirjalili M, Moayed M H. The influence of the crevice induced IR drop on polarization measurement of localized corrosion behavior of 316L stainless steel [J]. Corros. Sci., 2019, 156: 96
doi: 10.1016/j.corsci.2019.04.030
19 Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
20 Yang Y Z, Jiang Y M, Li J. In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
doi: 10.1016/j.corsci.2013.06.039
21 Ning F Q. Crevice corrosion behaviors of nickel-based Alloy 690 and 405 stainless steel in high temperature high pressure water [D]. Hefei: University of Science and Technology of China, 2021
21 宁方强. 690镍基合金/405不锈钢高温高压水缝隙腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
22 Torres C, Johnsen R, Iannuzzi M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures [J]. Corros. Sci., 2021, 178: 109053
doi: 10.1016/j.corsci.2020.109053
23 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
23 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
24 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
24 张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
25 Ren A, Li C T, Liu F H, et al. Effect of Cl- on corrosion behavior of alloy 690 in high temperature and high pressure water solution [J]. Chin. J. Nonferrous Met., 2012, 22: 1082
25 任 爱, 李成涛, 刘飞华 等. Cl-对690合金在高温高压水中腐蚀行为的影响 [J]. 中国有色金属学报, 2012, 22: 1082
26 Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl concentration on corrosion behavior of reinforced concrete in soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
26 丁清苗, 高宇宁, 侯文亮 等. Cl浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705
doi: 10.11902/1005.4537.2020.207
27 Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
doi: 10.1007/s10853-011-5889-6
28 Zhao J M, Zuo Y, Xiong J P, et al. Effect of pH value on corrosion behavior of low carbon steel in high salt waste water [J]. Mater. Prot., 2001, 34(7): 8
28 赵景茂, 左 禹, 熊金平 等. pH对低碳钢在高含盐污水中的腐蚀影响 [J]. 材料保护, 2001, 34(7): 8
29 Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
30 Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
30 赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
31 Kamaraj A, Erning J W. Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids [J]. Corrosion, 2020, 76: 424
doi: 10.5006/3324
32 Song Y Q, Du C W, Li X G. Electrochemical corrosion behavior of carbon steel with bulk coating holidays [J]. J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2006, 13: 37
33 Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43: 1693
doi: 10.1016/S0010-938X(00)00167-0
34 Wolfe R C, Weil K G, Shaw B A, et al. Measurement of pH gradients in the crevice corrosion of iron using a palladium hydride microelectrode [J]. J. Electrochem. Soc., 2005, 152: B82
doi: 10.1149/1.1851053
35 Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
doi: 10.1016/j.corsci.2016.08.002
36 Picot A, D'Aléo A, Baldeck P L, et al. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy [J]. J. Am. Chem. Soc., 2008, 130: 1532
doi: 10.1021/ja076837c pmid: 18193870
37 Lee M H, Park N, Yi C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe [J]. J. Am. Chem. Soc., 2014, 136: 14136
doi: 10.1021/ja506301n pmid: 25158001
38 Nishimoto M, Ogawa J, Muto I, et al. Simultaneous visualization of pH and Cl- distributions inside the crevice of stainless steel [J]. Corros. Sci., 2016, 106: 298
doi: 10.1016/j.corsci.2016.01.028
39 Trout T K, Bellama J M, Faltynek R A, et al. Effect of pH on the emission properties of aqueous tris (2, 6-dipicolinato) terbium (III) complexes [J]. Inorg. Chim. Acta, 1989, 155: 13
doi: 10.1016/S0020-1693(00)89273-7
40 Aoyama T, Sugawara Y, Muto I, et al. NH 4 + generation: The role of NO 3 - in the crevice corrosion repassivation of Type 316L stainless steel [J]. J. Electrochem. Soc., 2019, 166: C250
doi: 10.1149/2.0501910jes
41 Chen X, Gao F J, Wang Y L, et al. Transient numerical model for crevice corrosion of pipelines under disbonded coating with cathodic protection [J]. Mater. Des., 2016, 89: 196
doi: 10.1016/j.matdes.2015.09.047
42 Ding J W, Wang H T, Han E H. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60: 186
doi: 10.1016/j.jmst.2020.06.008
43 Liu F, Liu Q W, Chen J T, et al. Application of peridynamic method to analysis of crevice corrosion [J]. Bull. Sci. Technol., 2020, 36(3): 96
43 刘 飞, 刘齐文, 陈景涛 等. 近场动力学方法在缝隙腐蚀问题中的应用 [J]. 科技通报, 2020, 36(3): 96
44 Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
[1] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[2] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[3] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[4] 王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[5] 曹发和, 柳晓燕, 朱泽洁, 叶珍妮, 刘盼, 张鉴清. 扫描电化学显微镜的数值模拟和距离控制及其应用[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[6] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[7] 陈阵,余强,廖登辉,郭忠诚,武剑,罗智珊. 酸性介质中HR-2不锈钢表面活性的SECM三维图像表征研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 54-60.
[8] 吴志斌,魏英华,李京,孙超. 溶液状态对模拟剥离涂层底部Q345钢阴极极化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[9] 杨佳星,赵平,孙成,许进. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[10] 王力伟, 李晓刚, 杜翠薇, 曾笑笑. 微区电化学测量技术进展及在腐蚀领域的应用[J]. 中国腐蚀与防护学报, 2010, 30(6): 498-503.
[11] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[12] 曹佳 邵亚薇 张涛 孟国哲. 磷酸锌对环氧涂层破损处金属的缓蚀作用[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.
[13] 闫茂成; 王俭秋; 韩恩厚; 柯伟 . 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
[14] 赵景茂; 左禹; 熊金平 . 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(4): 193-197 .
[15] 李正奉; 毛旭辉; 甘复兴 . 阴极保护下缝隙内的电流分布[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .