|
|
缝隙腐蚀内部微区离子浓度监测的研究进展 |
白一涵1, 张航1, 朱泽洁1( ), 王疆瑛1, 曹发和2 |
1.中国计量大学材料与化学学院 杭州 310018 2.中山大学材料学院 广州 510006 |
|
Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior |
BAI Yihan1, ZHANG Hang1, ZHU Zejie1( ), WANG Jiangying1, CAO Fahe2 |
1.School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China 2.School of Materials Science, Sun Yat-sen University, Guangzhou 510006, China |
引用本文:
白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
BAI Yihan,
ZHANG Hang,
ZHU Zejie,
WANG Jiangying,
CAO Fahe.
Research Progress of Monitoring Ion Concentration Variation of Micro-areas in Corrosion Crevice Interior. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 828-836.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.325
或
https://www.jcscp.org/CN/Y2023/V43/I4/828
|
1 |
Yan L, Song G L, Wang Z M, et al. Crevice corrosion of steel rebar in chloride-contaminated concrete [J]. Constr. Build. Mater., 2021, 296: 123587
doi: 10.1016/j.conbuildmat.2021.123587
|
2 |
Huang X, Zhou K, Ye Q Z, et al. Crevice corrosion behaviors of CoCrMo alloy and stainless steel 316L artificial joint materials in physiological saline [J]. Corros. Sci., 2022, 197: 110075
doi: 10.1016/j.corsci.2021.110075
|
3 |
Ilic E, Pardo A, Hauert R, et al. Silicon corrosion in neutral media: The influence of confined geometries and crevice corrosion in simulated physiological solutions [J]. J. Electrochem. Soc., 2019, 166: C125
doi: 10.1149/2.0241906jes
|
4 |
Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5 wt% NaCl solution [J]. Corros. Sci., 2022, 196: 110039
doi: 10.1016/j.corsci.2021.110039
|
5 |
Xu W C, Deng Y, Zhang B B, et al. Crevice corrosion of U75V high-speed rail steel with varying crevice gap size by in-situ monitoring [J]. J. Mater. Res. Technol., 2022, 16: 1856
doi: 10.1016/j.jmrt.2021.12.116
|
6 |
Mu J, Li Y Z, Wang X. Crevice corrosion behavior of X70 steel in NaCl solution with different pH [J]. Corros. Sci., 2021, 182: 109310
doi: 10.1016/j.corsci.2021.109310
|
7 |
Lu L, Li X G. Corrosion products of reverse crevice corrosion of copper [J]. Int. J. Miner. Metall. Mater., 2011, 18: 320
doi: 10.1007/s12613-011-0441-x
|
8 |
Zhang T S, Wang J L, Li G F, et al. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater [J]. Bioelectrochemistry, 2021, 142: 107933
doi: 10.1016/j.bioelechem.2021.107933
|
9 |
Xu X Y, Liu S M, Liu Y, et al. Corrosion of stainless steel valves in a reverse osmosis system: Analysis of corrosion products and metal loss [J]. Eng. Fail. Anal., 2019, 105: 40
doi: 10.1016/j.engfailanal.2019.06.026
|
10 |
Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
|
11 |
Evans U R. The electrochemical character of corrosion [J]. J. Inst. Met., 1923, 30: 239
|
12 |
Fontana M G, Greene N D, McDonald D D. Corrosion engineering [J]. J. Electrochem. Soc., 1979, 126: 232C
|
13 |
Li Y Z, Wang X, Zhang G A. Corrosion behaviour of 13Cr stainless steel under stress and crevice in 3.5 wt. % NaCl solution [J]. Corros. Sci., 2020, 163: 108290
doi: 10.1016/j.corsci.2019.108290
|
14 |
Zhang C W, Fu T L, Chen H Y, et al. Research progress on crevice corrosion, plasma nitriding and surface nanocrystallization of titanium alloys [J]. Surf. Technol., 2019, 48(11): 114
|
14 |
张乘玮, 付天琳, 陈涵悦 等. 钛合金缝隙腐蚀、离子渗氮与表面纳米化的研究进展[J]. 表面技术, 2019, 48(11): 114
|
15 |
Li Y Z, Xu N, Guo X P, et al. The role of acetic acid or H+ in initiating crevice corrosion of N80 carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2017, 128: 9
doi: 10.1016/j.corsci.2017.08.028
|
16 |
Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325
doi: 10.1016/0010-938X(89)90039-5
|
17 |
Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of Type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
doi: 10.1016/j.corsci.2017.08.005
|
18 |
Shojaei E, Mirjalili M, Moayed M H. The influence of the crevice induced IR drop on polarization measurement of localized corrosion behavior of 316L stainless steel [J]. Corros. Sci., 2019, 156: 96
doi: 10.1016/j.corsci.2019.04.030
|
19 |
Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065
doi: 10.1016/j.corsci.2011.08.012
|
20 |
Yang Y Z, Jiang Y M, Li J. In situ investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
doi: 10.1016/j.corsci.2013.06.039
|
21 |
Ning F Q. Crevice corrosion behaviors of nickel-based Alloy 690 and 405 stainless steel in high temperature high pressure water [D]. Hefei: University of Science and Technology of China, 2021
|
21 |
宁方强. 690镍基合金/405不锈钢高温高压水缝隙腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
|
22 |
Torres C, Johnsen R, Iannuzzi M. Crevice corrosion of solution annealed 25Cr duplex stainless steels: Effect of W on critical temperatures [J]. Corros. Sci., 2021, 178: 109053
doi: 10.1016/j.corsci.2020.109053
|
23 |
Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
|
23 |
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
|
24 |
Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
|
24 |
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
doi: 10.11902/1005.4537.2020.257
|
25 |
Ren A, Li C T, Liu F H, et al. Effect of Cl- on corrosion behavior of alloy 690 in high temperature and high pressure water solution [J]. Chin. J. Nonferrous Met., 2012, 22: 1082
|
25 |
任 爱, 李成涛, 刘飞华 等. Cl-对690合金在高温高压水中腐蚀行为的影响 [J]. 中国有色金属学报, 2012, 22: 1082
|
26 |
Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl– concentration on corrosion behavior of reinforced concrete in soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
|
26 |
丁清苗, 高宇宁, 侯文亮 等. Cl–浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705
doi: 10.11902/1005.4537.2020.207
|
27 |
Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
doi: 10.1007/s10853-011-5889-6
|
28 |
Zhao J M, Zuo Y, Xiong J P, et al. Effect of pH value on corrosion behavior of low carbon steel in high salt waste water [J]. Mater. Prot., 2001, 34(7): 8
|
28 |
赵景茂, 左 禹, 熊金平 等. pH对低碳钢在高含盐污水中的腐蚀影响 [J]. 材料保护, 2001, 34(7): 8
|
29 |
Shojaei E, Moayed M H, Mirjalili M, et al. Proposed stability product criterion for open hemispherical metastable pits formed in the crevices of different aspect ratios (l/d) on 316L stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109389
doi: 10.1016/j.corsci.2021.109389
|
30 |
Zhao B J, Fan Y, Li Z Z, et al. Crevice corrosion behavior of 316L stainless steel paired with four different materials [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 332
|
30 |
赵柏杰, 范 益, 李镇镇 等. 不同类型接触面对316L不锈钢缝隙腐蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 332
doi: 10.11902/1005.4537.2019.198
|
31 |
Kamaraj A, Erning J W. Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids [J]. Corrosion, 2020, 76: 424
doi: 10.5006/3324
|
32 |
Song Y Q, Du C W, Li X G. Electrochemical corrosion behavior of carbon steel with bulk coating holidays [J]. J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2006, 13: 37
|
33 |
Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corros. Sci., 2001, 43: 1693
doi: 10.1016/S0010-938X(00)00167-0
|
34 |
Wolfe R C, Weil K G, Shaw B A, et al. Measurement of pH gradients in the crevice corrosion of iron using a palladium hydride microelectrode [J]. J. Electrochem. Soc., 2005, 152: B82
doi: 10.1149/1.1851053
|
35 |
Li Y Z, Xu N, Liu G R, et al. Crevice corrosion of N80 carbon steel in CO2-saturated environment containing acetic acid [J]. Corros. Sci., 2016, 112: 426
doi: 10.1016/j.corsci.2016.08.002
|
36 |
Picot A, D'Aléo A, Baldeck P L, et al. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications in biological imaging using two-photon scanning microscopy [J]. J. Am. Chem. Soc., 2008, 130: 1532
doi: 10.1021/ja076837c
pmid: 18193870
|
37 |
Lee M H, Park N, Yi C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe [J]. J. Am. Chem. Soc., 2014, 136: 14136
doi: 10.1021/ja506301n
pmid: 25158001
|
38 |
Nishimoto M, Ogawa J, Muto I, et al. Simultaneous visualization of pH and Cl- distributions inside the crevice of stainless steel [J]. Corros. Sci., 2016, 106: 298
doi: 10.1016/j.corsci.2016.01.028
|
39 |
Trout T K, Bellama J M, Faltynek R A, et al. Effect of pH on the emission properties of aqueous tris (2, 6-dipicolinato) terbium (III) complexes [J]. Inorg. Chim. Acta, 1989, 155: 13
doi: 10.1016/S0020-1693(00)89273-7
|
40 |
Aoyama T, Sugawara Y, Muto I, et al. NH 4 + generation: The role of NO 3 - in the crevice corrosion repassivation of Type 316L stainless steel [J]. J. Electrochem. Soc., 2019, 166: C250
doi: 10.1149/2.0501910jes
|
41 |
Chen X, Gao F J, Wang Y L, et al. Transient numerical model for crevice corrosion of pipelines under disbonded coating with cathodic protection [J]. Mater. Des., 2016, 89: 196
doi: 10.1016/j.matdes.2015.09.047
|
42 |
Ding J W, Wang H T, Han E H. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60: 186
doi: 10.1016/j.jmst.2020.06.008
|
43 |
Liu F, Liu Q W, Chen J T, et al. Application of peridynamic method to analysis of crevice corrosion [J]. Bull. Sci. Technol., 2020, 36(3): 96
|
43 |
刘 飞, 刘齐文, 陈景涛 等. 近场动力学方法在缝隙腐蚀问题中的应用 [J]. 科技通报, 2020, 36(3): 96
|
44 |
Cao F H, Xia Y, Liu W J, et al. Basic principles and applications of SECM in metal corrosion [J]. J. Electrochem., 2013, 19: 393
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|