Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 22-28     CSTR: 32134.14.1005.4537.2022.039      DOI: 10.11902/1005.4537.2022.039
  综合评述 本期目录 | 过刊浏览 |
保温层下腐蚀监检测技术研究进展
王伟杰1,2, 汉继程1,2, 毛阳3, 官自超1,2(), 狄志刚1,2, 缪磊1,2, 马胜军1,2
1.中海油能源发展股份有限公司 海洋石油工业腐蚀防护重点实验室 常州 213016
2.中海油常州涂料化工研究有限公司 常州 213016
3.中国石油四川石化有限责任公司 彭州 611930
Research Progress on Monitoring Techniques for Corrosion Under Insulating Layer
WANG Weijie1,2, HAN Jicheng1,2, MAO Yang3, GUAN Zichao1,2(), DI Zhigang1,2, MIAO Lei1,2, MA Shengjun1,2
1.CNOOC Energy Technology & Services Limited Key Laboratory of Corrosion Protection for Offshore Oil Industry, Changzhou 213016, China
2.CNOOC Changzhou Paint and Coatings Industry Research Institute Co. Ltd., Changzhou 213016, China
3.PetroChina Sichuan Petrochemical Co. Ltd., Pengzhou 611930, China
全文: PDF(932 KB)   HTML
摘要: 

综述了电化学噪声、电容成像、无线射频识别、红外热成像、分布式光纤、微波等几种腐蚀监检测技术在保温层下腐蚀 (CUI) 应用的研究现状,并根据监检测CUI隐患所处不同阶段将其分为CUI前期、中期和后期监检测技术,讨论指出前期监检测技术用于推测CUI倾向,而后期监检测技术仅能检出金属缺失量达到一定程度的不可逆转损伤,目前CUI监检测技术还存在数据解读不充分的问题,准确性和精度还有待于进一步提高,并展望了该领域进一步的研究方向。

关键词 保温层下腐蚀监检测技术腐蚀与防护    
Abstract

This paper reviews the research status of several technologies such as electrochemical noise, capacitive imaging, radio frequency identification, infrared thermography, distributed fiber optics, microwave, etc. in the application of monitoring and detection of corrosion under insulating layer (CUI). According to the history of the concerned CUI risks, the adopted CUI monitoring and detection technologies can be classified as three kinds, which are related to premise-, middle- and late-stages of the CUS risks to be examined respectively. It is discussed that the monitoring and detection technology for premise-stage is used to speculate the tendency of CUI, the monitoring and detection technology for later-stage can only detect the irreversible damage of metal loss to a certain extent. At the present, CUI monitoring and detection technology still has the problem in the inadequate data interpretation, while the accuracy and precision of the technology itself need to further be improved. This paper looks forward also to the future research direction in this field.

Key wordscorrosion under insulation    supervisory inspection techniques    corrosion and protection
收稿日期: 2022-02-14      32134.14.1005.4537.2022.039
ZTFLH:  TG172  
基金资助:常州市领军型创新人才引进培育项目(CQ20210028)
作者简介: 王伟杰,男,1992年生,硕士

引用本文:

王伟杰, 汉继程, 毛阳, 官自超, 狄志刚, 缪磊, 马胜军. 保温层下腐蚀监检测技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 22-28.
Weijie WANG, Jicheng HAN, Yang MAO, Zichao GUAN, Zhigang DI, Lei MIAO, Shengjun MA. Research Progress on Monitoring Techniques for Corrosion Under Insulating Layer. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 22-28.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.039      或      https://www.jcscp.org/CN/Y2023/V43/I1/22

图1  近场感应耦合原理示意图
图2  两种成像技术[41]
1 Cullin M J, Birmingham G, Srinivasan R, et al. Injectable sodium bentonite inhibitors for corrosion under insulation [J]. J. Pipeline Syst. Eng. Pract., 2020, 11: 04020036
2 Burhani N, Muhammad M, Ismail M C. Corrosion under insulation rate prediction model for piping by two stages of artificial neural network [A]. 6th International Conference on Production, Energy and Reliability 2018: World Engineering Science & Technology Congress (ESTCON) [C]. 2018
3 Eltai E O, Musharavati F, Mahdi E S. Severity of corrosion under insulation (CUI) to structures and strategies to detect it [J]. Corros. Rev., 2019, 37: 553
doi: 10.1515/corrrev-2018-0102
4 Geary W. Analysis of a corrosion under insulation failure in a carbon steel refinery hydrocarbon line [J]. Case Stud. Eng. Failure Anal., 2013, 1: 249
5 Morey A. Corrosion under insulation revisited: Aren't we about to finish that project?[J]. Proc. Saf. Prog., 2018, 37(4): 502
doi: 10.1002/prs.12007
6 Tsai Y H, Wang J, Chien W T, et al. A BIM-based approach for predicting corrosion under insulation [J]. Autom. Constr., 2019, 107: 102923
doi: 10.1016/j.autcon.2019.102923
7 Ayello F, Hill D, Marion S, et al. Integrated sensor networks for corrosion under insulation: monitoring, cost reduction, and life extension strategies [A]. Corrosion 2011 [C]. Houston, 2011
8 Deif S, Daneshmand M. Multiresonant chipless RFID array system for coating defect detection and corrosion prediction [J]. IEEE Trans. Ind. Electron., 2020, 67: 8868
9 Cadelano G, Bortolin A, Ferrarini G, et al. Corrosion detection in pipelines using infrared thermography: experiments and data processing methods [J]. J. Nondestr. Eval., 2016, 35: 49
doi: 10.1007/s10921-016-0365-5
10 Amer A, Al-Shehri A, Cunningham V, et al. Artificial intelligence to enhance corrosion under insulation inspection [A]. International Petroleum Exhibition & Conference [C]. Abu Dhabi, 2020
11 Cao Q, Pojtanabuntoeng T, Esmaily M, et al. A Review of Corrosion under Insulation: A Critical Issue in the Oil and Gas Industry[J]. Metals, 2022, 12(4): 561
doi: 10.3390/met12040561
12 Amer A, Al Shehri A, Parrott B, et al. Thermography image processing with neural networks to identify corrosion under insulation (CUI) [P]. U.S. Pat, 10551297B2, 2020
13 Liu H F, Han Y, Feng X, et al. Test on tiny leakage and insulating layer damage monitoring of buried oil pipelines using distributed optical fiber temperature sensor [J]. Oil Gas Storage Trans., 2018, 37: 1114
13 刘洪飞, 韩阳, 冯新 等. 埋地管道微小泄漏与保温层破坏分布式光纤监测试验 [J]. 油气储运, 2018, 37: 1114
14 Thomas P J, Hellevang J O. A distributed fibre optic approach for providing early warning of corrosion under insulation (CUI) [J]. J. Loss Prev. Process Ind., 2020, 64: 104060
doi: 10.1016/j.jlp.2020.104060
15 Thomas P J, Hellevang J O. A high response polyimide fiber optic sensor for distributed humidity measurements [J]. Sens. Actuators, 2018, 270B: 417
16 Cho H, Tamura Y, Matsuo T. Monitoring of corrosion under insulations by acoustic emission and humidity measurement [J]. J. Nondestr. Eval., 2011, 30: 59
doi: 10.1007/s10921-011-0090-z
17 Simonetti F, Nagy P B, Bejjavarapu S M, et al. Long-range microwave detection of wet insulation for CUI mitigation [A]. Corrosion 2015 [C]. Dallas, 2015
18 Jones R E, Simonetti F, Lowe M J S, et al. Use of microwaves for the detection of water as a cause of corrosion under insulation [J]. J. Nondestr. Eval., 2012, 31: 65
doi: 10.1007/s10921-011-0121-9
19 Jones R E, Simonetti F, Lowe M J S, et al. Use of microwaves for the detection of corrosion under insulation: a sensitivity study [J]. AIP Conf. Proc., 2011, 1335: 1714
20 Alleyne D N, Pavlakovic B, Lowe M J S, et al. Rapid, long range inspection of chemical plant pipework using guided waves [J]. AIP Conf. Proc., 2001, 557: 180
21 Mudge P J. Field application of the teletest long-range ultrasonic testing technique [J]. Insight, 2001, 43: 74
22 Guo Q, Wu X Q, Xu S, et al Research status and progress of high temperature and high pressure on-line corrosion monitoring technology [J]. Corros. Sci. Prot. Technol., 2016, 28: 160
22 郭琦, 吴欣强, 徐松 等. 高温高压在线腐蚀监测技术研究现状与进展 [J]. 腐蚀科学与防护技术, 2016, 28: 160
23 Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms [J]. Corros. Eng., Sci. Technol., 2016, 51: 527
24 Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
24 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
25 Homborg A M, Tinga T, Van Westing E P M, et al. A critical appraisal of the interpretation of electrochemical noise for corrosion studies [J]. Corrosion, 2014, 70: 971
doi: 10.5006/1277
26 Li H J, Wang Q S, Liao Z H, et al. Electrochemical noise behavior of X70 steel and its weld in Cl--containing high pH solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 60
26 李鸿瑾, 王歧山, 廖子涵 等. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 60
27 Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis [J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
28 Hou Y, Pojtanabuntoeng T, Iannuzzi M. Use of electrochemical current noise method to monitor carbon steel corrosion under mineral wool insulation [J]. npj Mater. Degrad., 2020, 4: 39
doi: 10.1038/s41529-020-00144-3
29 Caines S. Development of a simplified electrochemical noise method to monitor assets under insulation [D]. St. Johns: Memorial University, 2016
30 Wu Y L, Zhang D P, Cai G Y, et al. Effects of temperature on polarity reversal of under deposit corrosion of mild steel in oilfield produced water [J]. Corros. Eng., Sci. Technol., 2020, 55: 708
31 Shi W, Wang T Z, Dong Z H, et al. Application of wire beam electrode technique to investigate the migrating behavior of corrosion inhibitors in mortar [J]. Constr. Build. Mater., 2017, 134: 167
doi: 10.1016/j.conbuildmat.2016.12.036
32 Aung N N, Wai W K, Tan Y J. A novel electrochemical method for monitoring corrosion under insulation [J]. Anti-Corros. Methods Mater., 2006, 53: 175
doi: 10.1108/00035590610665590
33 Zhang H. Radio frequency non-destructive testing and evaluation of defects under insulation [D]. Newcastle: Newcastle University, 2014
34 Alamin M. Passive low frequencey RFID for detection and monitoring of corrosion under paint and insulation [D]. Newcastle: Newcastle University, 2014
35 Yin X K, Gu Y, Li Z, et al. Retrieving dimensions of surface features on conductors covered by insulation using the maximum Variation Ratio (MVR) in capacitive imaging [J]. NDT & E Int., 2021, 117: 102384
doi: 10.1016/j.ndteint.2020.102384
36 Yin X K, Hutchins D A, Chen G M, et al. Detecting surface features on conducting specimens through an insulation layer using a capacitive imaging technique [J]. NDT & E Int., 2012, 52: 157
doi: 10.1016/j.ndteint.2012.08.004
37 Yin X K, Hutchins D A, Chen G M, et al. Studies of the factors influencing the imaging performance of the capacitive imaging technique [J]. NDT & E Int., 2013, 60: 1
doi: 10.1016/j.ndteint.2013.07.001
38 Li Z, Yin X K, Yan A, et al. Characterizing surface features on conducting specimens through an insulation layer using the capacitive imaging technique [J]. AIP Conf. Proc., 2016, 1706: 090003
39 Yin X K, Li Z, Yuan X A, et al. Corrosion depth inversion method based on the lift-off effect of the capacitive imaging (CI) technique [J]. IEEE Access, 2020, 8: 22770
doi: 10.1109/ACCESS.2020.2970204
40 Sipaun S, Ab Rahman M F, Hasan H, et al. Examination of corrosion under insulation using gamma ray computed tomography [A]. IOP Conference Series: Materials Science and Engineering [C]. Selangor, 2020: 012039
41 Abdul-Majid S, Balamesh A. Imaging corrosion under insulation by gamma ray backscattering method [A]. 18th World Conference on Nondestructive Testing [C]. Durban, 2012: 16
42 Abdul-Majid S, Balamesh A. Single side imaging of corrosion under insulation using single photon gamma backscattering [J]. Res. Nondestr. Eval., 2014, 25: 172
doi: 10.1080/09349847.2013.869376
43 Susiapan Y S L, Rahim R A, Pusppanathan J, et al. Portable gamma-ray tomography instrumentation for investigating corrosion under insulation of pipelines [A]. Proceedings of the 13th WSEAS International Conference on Circuits [C]. Rodos, 2009: 168
44 Xiong L, Sun Y J. Research on monitoring system for corrosion of pipeline under insulation and its application [J]. J. Saf. Sci. Technol., 2019, 15(11): 102
44 熊亮, 孙玉江. 保温层下管道腐蚀监测系统及应用研究 [J]. 中国安全生产科学技术, 2019, 15(11): 102
45 Bray A V, Corley C J, Fischer R B, et al. Development of guided wave ultrasonic techniques for detection of corrosion under insulation in metal pipe [A]. Proceedings of the 1998 ASME Energy Sources Technology Conference [C]. Houston, 1998
46 Cheng W Y. Pulsed eddy current testing of carbon steel pipes' wall-thinning through insulation and cladding [J]. J. Nondestr. Eval., 2012, 31: 215
doi: 10.1007/s10921-012-0137-9
47 Sophian A, Tian G Y, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT [J]. NDT & E Int., 2003, 36: 37
doi: 10.1016/S0963-8695(02)00069-5
48 Lorenz M, Sprachmann G. Method and system for detecting corrosion of an insulated corrosion prone object [P]. U.S. Pat, US-9267874-B2, 2016
[1] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[2] 王正泉,李言涛,徐玮辰,杨黎晖,孙丛涛. 全球腐蚀与防护领域研究现状与发展趋势分析:基于文献计量学和信息可视化分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 201-214.
[3] 张冬梅; 赵美娣 . 《中国腐蚀与防护学报》1996-2000年引文统计分析[J]. 中国腐蚀与防护学报, 2002, 22(3): 189-191 .