Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 879-884    DOI: 10.11902/1005.4537.2021.279
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究
王永田1, 赵祎璠1, 魏啸天1, 王嘉伟1, 陈诚1, 王宇1, 张贝贝1, 田欣利2, 曲作鹏1()
1.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
2.陆军装甲兵学院 装备再制造技术国防科技重点试验室 北京 100072
High Temperature Chlorine Corrosion of Nickel Based Alloy Coating for Piping of Waste Incineration Power Plant
WANG Yongtian1, ZHAO Yifan1, WEI Xiaotian1, WANG Jiawei1, CHEN Cheng1, WANG Yu1, ZHANG Beibei1, TIAN Xinli2, QU Zuopeng1()
1.Key Laboratory of Power Station Energy Transfer and Transformation System Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
2.Key Laboratory of National Defense Technology for Equipment Remanu-facturing Technology, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(9840 KB)   HTML
摘要: 

垃圾焚烧电站水冷壁高温腐蚀是影响垃圾焚烧炉稳定运行的重要因素,为了提高垃圾焚烧炉运行的安全性,研究者大多从基材的选择、施加表面防护涂层、温度控制等方面进行了研究。本文则主要针对施加表面涂层方面,研究了锅炉水冷壁镍基涂层高温氯腐蚀性能,利用SEM、EDS、XRD和光学显微镜等对合金涂层进行表面形貌和组织结构分析,并沿涂层深度方向进行维氏硬度测试和组织成分检测,探究其抗氯腐蚀机理。结果表明,镍基涂层在高温下耐腐蚀能力强,组织致密,没有孔隙、裂纹等较大缺陷,能够较好地耐氯盐腐蚀,保护垃圾焚烧炉水冷壁。

关键词 火焰喷涂感应重熔氯腐蚀镍基合金涂层    
Abstract

The high temperature corrosion of water-cooled wall of the municipal solid waste incineration power plant is an important factor affecting the stable operation of the incinerator. In order to improve the safe operation of the waste incinerator, the existing improvement measures mostly involve the steel pipe selection, surface coating, temperature control and so on. In this paper, aiming at the application of surface coating, the high temperature chlorine corrosion performance of the nickel-based coating on boiler pipe was studied. The surface morphology, microstructure and composition of the alloy coating were characterized by means of optical microscope, vicker's hardness tester, SEM, EDS and XRD. The results show that the nickel-based coating has strong corrosion resistance at high temperature, there are no pores, cracks and other major defects in the coating. The coating can better resist the chloride corrosion and protect the pipeline steels of waste incinerator.

Key wordsflame spraying    induction remelting    chlorine corrosion    nickel-based alloy coating
收稿日期: 2021-10-11     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFC1907000);深圳市基础研究机构 (深圳市清洁能源研究院)专项经费(CERI-KY-2019-002);深圳市能源环保有限公司委托研发项目(0309-HBZB-服务-2019-2246)(2020JG003);中央高校基本科研业务费;深圳市能源环保有限公司委托研发项目(0309-HBZB-服务-2019-2246)(2020JG003)
通讯作者: 曲作鹏     E-mail: z.qu@ncepu.edu.cn
Corresponding author: QU Zuopeng     E-mail: z.qu@ncepu.edu.cn
作者简介: 王永田,男,1980年生,博士,副教授

引用本文:

王永田, 赵祎璠, 魏啸天, 王嘉伟, 陈诚, 王宇, 张贝贝, 田欣利, 曲作鹏. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 879-884.
Yongtian WANG, Yifan ZHAO, Xiaotian WEI, Jiawei WANG, Cheng CHEN, Yu WANG, Beibei ZHANG, Xinli TIAN, Zuopeng QU. High Temperature Chlorine Corrosion of Nickel Based Alloy Coating for Piping of Waste Incineration Power Plant. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 879-884.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.279      或      https://www.jcscp.org/CN/Y2022/V42/I5/879

图1  4种不同实验条件试块的宏观形貌
图2  4种不同实验条件试块的截面显微形貌
图3  不同实验条件腐蚀后涂层表面SEM形貌
图4  试块经过600 ℃/400 h腐蚀后白色区域内的元素分布图
图5  4种不同实验条件涂层的XRD图谱
图6  试块由涂层到基体的显微硬度 (由涂层表面到基体内部)
1 Tan Y X, Wu R X. Failure analysis on the bursting of boiler pipes [J]. Hunan Metall., 2001, (3): 13
1 谭彦显, 吴瑞祥. 锅炉管爆裂失效的分析研究 [J]. 湖南冶金, 2001, (3): 13
2 Dong Y, Zhang T S, Lin X P. Modern Surface Engineering Techniques [M]. Beijing: China Machine Press, 2000
2 董允, 张廷森, 林晓娉. 现代表面工程技术 [M]. 北京: 机械工业出版社, 2000
3 He Y H, Li H, Li M D, et al. Analysis and countermeasures of water wall tube explosion in partition wall of the waste incineration boiler [J]. Ind. Boil., 2018, (3): 50
3 何育恒, 黎华, 李茂东 等. 垃圾焚烧余热发电锅炉隔墙水冷壁爆管事故分析与对策 [J]. 工业锅炉, 2018, (3): 50
4 Skrifvars B J, Westén-Karlsson M, Hupa M, et al. Corrosion of super-heater steel materials under alkali salt deposits. Part 2: SEM analyses of different steel materials [J]. Corros. Sci., 2010, 52: 1011
doi: 10.1016/j.corsci.2009.11.026
5 Li G F, Guo S B, Zhao X. High temperature chloridization corrosion on the bio-fuel boiler [J]. Total Corros. Control., 2009, 23(11): 44
5 李广风, 郭士宾, 赵旭. 生物质燃烧锅炉中的高温氯腐蚀 [J]. 全面腐蚀控制, 2009, 23(11): 44
6 Chen S Y, Liu C S, Fu G Q, et al. Minor crystallization of amorphous alloy Fe73.5Cu1Nb3Si13.5B9 by laser irradiation [J]. Chin. J. Lasers, 2003, 30: 1049
6 陈岁元, 刘常升, 付贵勤 等. CO2激光辐照Fe73.5Cu1Nb3Si13.5B9非晶合金的微量晶化 [J]. 中国激光, 2003, 30: 1049
7 Fan Z S, Sun D B, Yu H Y, et al. Preparation of iron base amorphous and nanocrystalline alloy coatings by plasma spraying [J]. J. Univ. Sci. Technol. Beijing, 2005, 27: 582
7 樊自栓, 孙冬柏, 俞宏英 等. 等离子喷涂制备铁基非晶-纳米复合涂层 [J]. 北京科技大学学报, 2005, 27: 582
8 Xiang X H, Liu X Y, Zhu H Z. Fabrication of Fe base amorphous alloy coating by plasma spraying technology [J]. J. Mater. Eng., 2002, (2): 10
8 向兴华, 刘下义, 朱晖朝. Fe基非晶合金涂层的等离子喷涂制备工艺研究 [J]. 材料工程, 2002, (2): 10
9 Hwang J Y, Neira A, Scharf T W, et al. Laser-deposited carbon nanotube reinforced nickel matrix composites [J]. Scr. Mater., 2008, 59: 487
doi: 10.1016/j.scriptamat.2008.04.032
10 Chen Y, Lu F G, Zhang K, et al. Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel718 [J]. Carbon, 2016, 107: 361
doi: 10.1016/j.carbon.2016.06.014
11 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
11 蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205
12 Pan T J, Lin Y F, Hu J. Accelerated corrosion behavior of Fe-Al alloys under KCl-ZnCl2 deposits [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 58
12 潘太军, 林一凡, 胡静. Fe-Al合金在KCl-ZnCl2沉积盐作用下的加速腐蚀行为 [J]. 中国腐蚀与防护学报, 2010, 30: 58
13 Zhong N. Study on microstructure and properties of anticorrosion and antiwear coatings manufactured by high frequency induction cladding [D]. Beijing: China University of Petroleum, 2010
13 钟娜. 高频感应熔覆耐磨耐蚀熔覆层的制备与组织性能研究 [D]. 北京: 中国石油大学, 2010
14 Yang X T, Wang Z P, Li W S, et al. Surface coating prepared by inducing cladding technology and its organization [J]. Mater. Prot., 2010, 43(8): 46
14 杨效田, 王智平, 李文生 等. 感应熔覆制备表面涂层工艺及涂层组织特征 [J]. 材料保护, 2010, 43(8): 46
15 Utu I D, Marginean G. Effect of electron beam remelting on the characteristics of HVOF sprayed Al2O3-TiO2 coatings deposited on titanium substrate [J]. Colloids Surf., 2017, 526A: 70
16 Qu Z P, Zhong R G, Wang L, et al. Research progress on high-temperature corrosion treatment schemes of waste to energy boilers [J]. China Surf. Eng., 2020, 33(3): 50
16 曲作鹏, 钟日钢, 王磊 等. 垃圾焚烧发电锅炉高温腐蚀治理的研究进展 [J]. 中国表面工程, 2020, 33(3): 50
17 Wu L T, Zhou Z H, Zhang X, et al. Long-term corrosion resistance of plasma sprayed FeCrMoCBY Fe-based amorphous coating in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 717
17 吴林涛, 周泽华, 张欣 等. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 717
18 Fu Y, Zhang Y, Bao X Y, et al. Research progress on wear-resistant coatings for Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 117
18 付颖, 张艳, 包星宇 等. 钛合金表面耐磨涂层研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 117
19 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
19 伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
20 Chen T C, Xiang J H, Jiang L F, et al. High-temperature corrosion behavior of Q235 steel in oxidizing atmosphere containing chlorine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 560
20 陈土春, 向军淮, 江龙发 等. Q235钢在氧化性含Cl气氛中的高温腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 560
21 Xiong Y, Liu G M, Zhan F Y, et al. Hot corrosion and failure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 369
21 熊义, 刘光明, 占阜元 等. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为 [J]. 中国腐蚀与防护学报, 2021, 41: 369
22 Yang Y, Shui L Y, Zhang Y, et al. Preparation and application of nickel-based coatings [J]. Metall. Funct. Mater., 2013, 20(3): 49
22 杨颖, 水露雨, 张瑜 等. 镍基涂层的制备方法及应用 [J]. 金属功能材料, 2013, 20(3): 49
23 Zheng S E, Pan Y J, Zhang H, et al. Corrosion resistance of boride cladding layer on surface of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 843
23 郑世恩, 潘应君, 张恒 等. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 843
24 Xu B S, Li C J, Liu S C, et al. Surface engineering and thermal spraying technology and their developments [J]. China Surf. Eng., 1998, (1): 3
24 徐滨士, 李长久, 刘世参 等. 表面工程与热喷涂技术及其发展 [J]. 中国表面工程, 1998, (1): 3
25 Jiang W, Zhao J P, Gong M. Hot spraying technology and the development [J]. China Coat., 2006, 21(11): 51
25 蒋伟, 赵金平, 龚敏. 热喷涂技术及其发展 [J]. 中国涂料, 2006, 21(11): 51
26 Sun W. The control systems design based on simulation of temperature field in induction remelting and research on modified Ni60 coatings [D]. Beijing: China Academy of Machinery Science and Technology, 2019
26 孙文. 基于感应重熔温度场模拟的控制系统设计及改性Ni60涂层研究 [D]. 北京: 机械科学研究总院, 2019
[1] 曲作鹏, 田欣利, 王永田, 赵祎璠, 王磊, 张贝贝, 王海军. 垃圾电站锅炉腐蚀速度及关键影响因素研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 839-844.
[2] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.