Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 798-804    DOI: 10.11902/1005.4537.2021.270
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
武汉地铁钢轨在典型隧道环境中的腐蚀现状分析
庞涛1,2, 刘静1(), 黄峰1, 李闯3, 赵国知2, 黄先球2, 郑建国2, 程鹏2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2.宝钢股份中央研究院 武汉 430081
3.中国铁道科学研究院金属及化学研究所 北京 100081
Corrosion Survey of Subway Rails in Typical Tunnel Environments at Wuhan Region of Central China
PANG Tao1,2, LIU Jing1(), HUANG Feng1, LI Chuang3, ZHAO Guozhi2, HUANG Xianqiu2, ZHENG Jianguo2, CHENG Peng2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Central Research Institute, BaoShan Iron&Steel Co. Ltd., Wuhan 430081, China
3.Metal & Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
全文: PDF(8587 KB)   HTML
摘要: 

走访我国华中地区在役和在建的地铁站点隧道环境,调查钢轨腐蚀状况。对隧道内水质化学成分、钢轨腐蚀产物微观形貌及物相结构进行观察和分析。结果表明,按照钢轨腐蚀程度不同,结合隧道内水质化学成分,可以将钢轨的腐蚀环境分为潮湿大气、污水浸泡、水泥砂浆覆盖及杂散电流。在上述4类服役和存放环境下,钢轨的腐蚀程度均不相同:潮湿大气腐蚀条件下钢轨 (在役) 腐蚀产物致密、稳定,具有一定的保护性。污水浸泡与水泥覆盖条件下,钢轨 (在建) 发生了Cl-参与下的鼓泡状局部腐蚀和氧化层全面腐蚀,而杂散电流腐蚀 (在用) 则直接造成了轨底缺损,是目前所见腐蚀速率最快、程度最重的钢轨腐蚀情况。针对不同环境下的钢轨腐蚀,提出了相应防护措施建议。

关键词 钢轨地铁隧道环境局部腐蚀杂散电流腐蚀    
Abstract

A corrosion survey was made for the subway rails at Wuhan city of Central China, focusing especially on the corrosion related environments in tunnels of subway stations in service or under construction. The chemical composition of the collected water samples, the microstructure and phase constituents of corrosion products on subway rails were examined. The results show that according to the difference in the corrosion degree of subway rails and the quality of relevant waters collected from various tunnels, the corrosion environments encountered for the subway rails can be divided into four categories: humid atmosphere, sewage immersion, cement mortar as cover, and stray current. As the subway rails in service or storage in the above four types of environments, the corrosion degree of the rails is different: in the humid atmosphere, the formed corrosion products on rails (in service) are compact and stable with protectiveness to certain extent; in the condition of sewage soaking and cement mortar as cover, the rails (under construction) experienced local bubbled corrosion and uniform corrosion with the participation of Cl-; while the stray current induced corrosion (in use) can directly cause the damage of the rail bottom, which is the fastest and the most severe corrosion of the subway rails, what we've seen up to now. In view of the corrosion of rails in different environments, the corresponding protection measures are also put forward.

Key wordsrail    subway tunnel environment    local corrosion    stray current corrosion
收稿日期: 2021-10-09     
ZTFLH:  TG174  
基金资助:中国铁道科学研究院科研项目(2019YJ093)
通讯作者: 刘静     E-mail: liujing@wust.edu.cn
Corresponding author: LIU Jing     E-mail: liujing@wust.edu.cn
作者简介: 庞涛,男,1982年生,硕士,高级工程师

引用本文:

庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
Tao PANG, Jing LIU, Feng HUANG, Chuang LI, Guozhi ZHAO, Xianqiu HUANG, Jianguo ZHENG, Peng CHENG. Corrosion Survey of Subway Rails in Typical Tunnel Environments at Wuhan Region of Central China. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 798-804.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.270      或      https://www.jcscp.org/CN/Y2022/V42/I5/798

Environment typeEnvironmental corrosion factorWater qualityLocationCorrosion degree
Humid atmosphereAtmospheric corrosion, temperature 10-30 ℃, humidity 70%-90%RHNeutral electrolyteIn most operating sections, the rails do not directly contact waterLight corrosion
Sewage immersionConstruction sewage, airNear neutral electrolyte containing Cl- and SO42-Low-lying prone to water section in the tunnelLight corrosion and local corrosion
Cement mortar overlayPortland cement, water, airalkaline electrolyte containing Cl-The section where lay the rail before pouring the concreteOverall corrosion of the rail surface, destroyed oxide scale
Stray currentCurrent, deposited salts, cement or other electrolytesNeutral electrolyteLong operation years, water leakage in the tunnel, sand and stones at the bottom of the rail or electrolyte accumulationRail bottom defect, damaged integrity, severe corrosion
表1  地铁服役环境因素特征汇总
图1  潮湿大气环境腐蚀5 a钢轨外观形貌和3 a整体外观形貌
图2  污水浸泡腐蚀环境锈蚀轨底脚及浸泡在水中钢轨的形貌
图3  污水浸泡蚀坑内锈蚀产物微观形貌
图4  污水浸泡蚀坑中锈蚀产物微观形貌与成分分析
图5  水泥砂浆覆盖钢轨表面剥落腐蚀产物微观形貌及EDS谱
图6  水泥砂浆覆盖环境下钢轨整体和表面锈蚀形貌
图7  杂散电流腐蚀的钢轨底脚缺损外观
图8  潮湿大气环境钢轨腐蚀机理示意图
图9  污水浸泡环境钢轨腐蚀机理示意图
图10  水泥覆盖环境钢轨腐蚀机理示意图
1 Wang X L, An S L, Cao Z. Advances in corrosion resistance for heavy rail steel [J]. J. Inner Mongolia Univ. Sci. Technol., 2016, 35: 205
1 王晓丽, 安胜利, 曹峥. 耐腐蚀重轨钢研究进展 [J]. 内蒙古科技大学学报, 2016, 35: 205
2 He Q Q. Domestic and overseas rail anti-corrosion methods and development trends [J]. China Steel, 2020, (6): 32
2 何琴琴. 国内外钢轨防腐蚀方法及发展动态 [J]. 中国钢铁业, 2020, (6): 32
3 Luo Y X, Zhang Z W, Guo J A, et al. Analysis on corrosion mechanism for railways of Guangzhou Railway (Group) company [J]. J. Railw. Sci. Eng., 2011, 8(3): 78
3 罗虞霞, 张志伟, 郭吉安 等. 广铁管内钢轨的腐蚀机理探讨 [J]. 铁道科学与工程学报, 2011, 8(3): 78
4 Isozaki H, Oosawa J, Kawano Y, et al. Measures against electrolytic rail corrosion in Tokyo metro subway tunnels [J]. Procedia Eng., 2016, 165: 583
doi: 10.1016/j.proeng.2016.11.754
5 Hernández F C R, Plascencia G, Koch K. Rail base corrosion problem for North American transit systems [J]. Eng. Failure Anal., 2009, 16: 281
doi: 10.1016/j.engfailanal.2008.05.011
6 Yin T, Shi Y H, Huang Y J. Guangzhou metro station encountered a problem of corrosion of groundwater [J]. Guangdong Archit. Civ. Eng., 2015, 22(9): 50
6 尹涛, 石玉华, 黄永健. 广州地铁某站所遇地下水腐蚀性问题浅析 [J]. 广东土木与建筑, 2015, 22(9): 50
7 Cao Q, Liu J W. Analysis on statistics of groundwater corrosion in Shenzhen metro line 11 [J]. J. Shanghai Inst. Technol. (Nat. Sci.), 2016, 16: 147
7 曹权, 刘健炜. 深圳地铁11号线地下水侵蚀性统计分析 [J]. 上海应用技术学院学报 (自然科学版), 2016, 16: 147
8 Xiao F. Review on research of rail corrosion and protection [J]. Equip. Manuf. Technol., 2016, (4): 157
8 肖锋. 钢轨腐蚀与防护研究述评 [J]. 装备制造技术, 2016, (4): 157
9 Fan D. Research on the corrosion and aging behavior of typical high-speed railway bodywork materials in the main atmosphere in China [D]. Beijing: China Academy of Machinery Science and Technology, 2016
9 樊栋. 高铁车体典型材料在我国主要大气环境中的腐蚀及老化行为研究 [D]. 北京: 机械科学研究总院, 2016
10 Ren A C, Zhu M, Fei J J, et al. Early corrosion mechanism of U75V and U68CrCu rail steel [J]. China Railw. Sci., 2014, 35(5): 7
10 任安超, 朱敏, 费俊杰 等. U75V和U68CrCu钢轨钢早期腐蚀机理研究 [J]. 中国铁道科学, 2014, 35(5): 7
11 Shang C J, Wang X M, Yang S W, et al. Refinement of packet size in low carbon Bainitic steel by special thermo-mechanical control process [J]. J. Univ. Sci. Technol. Beijing, 2004, 11: 221
12 Kang F F. Synthesis of chrysanthemum-like akaganeite and its adsorption for crazure S [D]. Shijiazhuang: Hebei Normal University, 2016
12 康菲菲. 菊花状β-FeOOH的制备及其对铬天青S的吸附研究 [D]. 石家庄: 河北师范大学, 2016
13 Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution [J]. Corros. Prot., 2007, 28: 17
13 陈惠玲, 李晓娟, 魏雨. 碳钢在含氯离子环境中腐蚀机理的研究 [J]. 腐蚀与防护, 2007, 28: 17
14 Liu X Y, Zhao Y Z, Zhang H, et al. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
14 刘欣怡, 赵亚州, 张欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
15 Chen C M. Micro-analysis on oxide scale of U75V hot rolled rail [J]. Iron Steel Vanadium Titanium, 2018, 39(3): 165
15 陈崇木. U75V热轧钢轨表面氧化铁皮显微分析 [J]. 钢铁钒钛, 2018, 39(3): 165
16 Wu S J. The pearlite structure has great resistance to U71Mn heavy rail steel Effect of gas corrosion [D]. Baotou: Inner Mongolia University of Science & Technology, 2020
16 吴世杰. 珠光体组织对U71Mn重轨钢抗大气腐蚀的影响 [D]. 包头: 内蒙古科技大学, 2020
17 Han J K, Yan H, Huang Y, et al. Structural features of oxide scales on weathering steel and their influence on atmospheric corrosion [J]. Acta Metall. Sin., 2017, 53: 163
17 韩军科, 严红, 黄耀 等. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响 [J]. 金属学报, 2017, 53: 163
18 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
18 李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 40: 463
19 Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers [J]. Corros. Sci., 1983, 23: 969
doi: 10.1016/0010-938X(83)90024-0
20 Zhang Y W, Guo T M, Song Z T, et al. Corrosion behavior of Q345q steel with oxide scale in simulated typical atmospheric environment in northwest China [J]. Chin. J. Mater. Res., 2019, 33: 749
20 张延文, 郭铁明, 宋志涛 等. 带氧化皮Q345q钢在模拟西北典型大气环境中的腐蚀行为研究 [J]. 材料研究学报, 2019, 33: 749
doi: 10.11901/1005.3093.2019.088
21 Li K Q, Yang L J, Xu Y Z, et al. Influence of SO4 2- on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 55: 457
21 李恺强, 杨璐嘉, 徐云泽 等. SO4 2-对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 55: 457
doi: 10.11900/0412.1961.2018.00475
22 Gu R K. Corrosion behavior of reinforcing steel with different surface states in concrete containing chloride [D]. Baotou: Inner Mongolia University of Science & Technology, 2013
22 谷荣坤. 不同表面状态钢筋在含氯混凝土中腐蚀行为研究 [D]. 包头: 内蒙古科技大学, 2013
23 Lv S J, Cheng X Q, Duan Z G, et al. Effect of chloride ion content in circulating water on the corrosion behavior of carbon steel [J]. Pet. Process. Petrochem., 2011, 42(3): 84
23 吕胜杰, 程学群, 段振国 等. 循环水中氯离子含量对碳钢腐蚀行为影响规律的研究 [J]. 石油炼制与化工, 2011, 42(3): 84
24 Gan L. Corrosion behavior of high-strength corrosion resistant rebar in a solution of chlorine salt [D]. Maanshan: Anhui University of Technology, 2017
24 甘玲. 高强耐蚀钢筋在氯盐环境下的腐蚀行为 [D]. 马鞍山: 安徽工业大学, 2017
25 Xie W C. Study on the corrosion behavior of carbon steel and environment-friendly inhibitors in simulated concrete solution containing chloride [D]. Guangzhou: South China University of Technology, 2017
25 谢婉晨. 含Cl-混凝土模拟液中碳钢腐蚀及环保型缓蚀剂研究 [D]. 广州: 华南理工大学, 2017
[1] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[2] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[3] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[4] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[5] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[6] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[7] 张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[8] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[9] 唐晓,时春涛,曹光,李焰. 海岸土壤环境对油气管道局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[10] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[11] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[12] 朱元良; 郭兴蓬 . 中性介质中碳钢腐蚀沉积膜下局部腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(5): 271-276 .
[13] 叶威; 李瑛; 王福会 . 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 129-134 .
[14] 欧阳维真 . 铁器文物在含氯离子水溶液中局部腐蚀闭塞区化学状态的变化[J]. 中国腐蚀与防护学报, 2004, 24(6): 364-367 .
[15] 刘大扬; 魏开金; 李文军 . 南海榆林海域环境因素对钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .