Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 523-530    DOI: 10.11902/1005.4537.2021.194
  综合评述 本期目录 | 过刊浏览 |
埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展
刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰(), 孟国哲
中山大学化学工程与技术学院 珠海 519000
Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating
LIU Ling, SHAO Ziya, JIA Tianyue, LIU Guoqiang, LEI Bing(), MENG Guozhe
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
全文: PDF(3241 KB)   HTML
摘要: 

埃洛石纳米管 (HNTs) 是一种天然的硅铝酸盐类纳米材料,具有独特的中空管状结构、比表面积大和反应活性高等特点,其作为纳米装载器在智能防腐涂层领域中凸显出越来越重要的应用价值。本文简述了HNTs的结构和性质,分析了HNTs在智能涂层领域应用的可行性,阐述了HNTs表面改性机理和缓蚀剂负载影响因素,分析了改性HNTs作为自修复单元在智能防腐涂层中的应用研究进展。同时,对HNTs智能涂层的功能化改进方面进行了展望。

关键词 埃洛石负载改性自修复涂层    
Abstract

Halloysite nanotubes (HNTs) are natural aluminosilicate nanomaterials with unique hollow tubular structure, large specific surface area and high reactivity. They exhibit more and more significant application value as a nano-carrier in the field of intelligent anti-corrosion coatings. In this paper, the structure, and properties of HNTs are briefly described, the feasibility of application of HNTs for intelligent coatings is analyzed, the mechanism of surface modification of HNTs and the factors affecting the carrying capacity of corrosion inhibitor are described, the application research progress of the modified HNTs as self-repairing unit for intelligent anticorrosion coating is also analyzed. Simultaneously, the functional improvement of HNTs modified intelligent coating is prospected.

Key wordsHalloysite nanotubes    load modification    self-repairing coating
收稿日期: 2021-08-12     
ZTFLH:  TG172  
基金资助:广州市科技计划项目(202102020468);国家自然科学基金联合基金(U20A20233);中央高校基本科研业务费(中山大学,2021qntd13)
通讯作者: 雷冰     E-mail: leibing@mail.sysu.edu.cn
Corresponding author: LEI Bing     E-mail: leibing@mail.sysu.edu.cn
作者简介: 刘玲,女,1996年生,硕士生

引用本文:

刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
Ling LIU, Ziya SHAO, Tianyue JIA, Guoqiang LIU, Bing LEI, Guozhe MENG. Research Progress on Application of Halloysite Nanotubes for Modification of Smart Anti-corrosion Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 523-530.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.194      或      https://www.jcscp.org/CN/Y2022/V42/I4/523

Chemical formulaAl2O3·2SiO2·nH2O
Length0.2~2 μm
Outer diameter40~70 nm
Inner diameter15~40 nm
Aspect ratio (L/D)10~50
Elastic modulus (theoretical value)140 GPa (230~340 GPa)
Mean particle size in aqueous solution143 nm
Particle size range in aqueous solution50~400 nm
BET surface area22.1~81.6 m2/g
Pore space14~46.8%
Lumen space11~39%
Density2.14~2.59 g/cm3
Average pore size7.97~10.02 nm
Structural water release temperature400~600 ℃
表1  HNTs典型特征参数[25]
图1  强酸和强碱环境下HNTs的反应示意图[27]
图2  HNTs酸蚀扩孔反应过程示意[28]
SilaneChemical
γ-Glycidoxypropyltrimethoxysilane (GPTS)[33]
3-Aminopropyltrimethoxysilane (APS)[34]
(3-Aminopropyl) triethoxysilane (APTES)[35]
[3-(2-Aminoethylamino) propyl]trimethoxysilane (AEAPS)[20,36]
3-(Trimethoxysilyl) propyl methacrylate (MAPTS)[37]
Vinyltrimethoxysilane (VTMS)[38]
表2  HNTs表面接枝用硅烷偶联剂分子结构
图3  HNTs真空负载缓蚀剂过程
图4  HNTs表面层层自组装过程和HNTs端部Cu2+封端处理示意[23,49]
图5  HNTs智能防腐涂层的制备流程
SubstrateMatters loaded in HNTsCoating typeTime and literature
AA2024-T3AlMBTSolute-gel hybrid coating2008[19]
110Cu, 2024AlBTASolute-gel hybrid coating2009[41]
110CuBTA, MBI, MBTAcrylate coating、Polyaminoester coating2013[39]
Carbon steel, Al-alloy8-HQPowder epoxy resin coating2013[41]
Carbon steelDodecyl amineAlkyd paint2015[30]
Carbon steelBTAEpoxy varnish2015[50]
Ti-alloyCTSCTS/HNTs electrodeposition coating2016[51]
AM50 Mg-alloyBTAMicroarc oxidation coating2016[52]
Carbon steelMBT, BTAEpoxy coating2017[53]
Carbon steelZn2+Epoxy coating2019[46]
2024Al2-MBTEpoxy coating2021[40]
表3  不同基材上典型的HNTs自修复涂层
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
1 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Han E-H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33: 65
2 韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护—现状与趋势 [J]. 中国材料进展, 2014, 33: 65
3 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
3 栾浩, 孟凡帝, 刘莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
4 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 571
4 王贵容, 郑宏鹏, 蔡华洋 等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
5 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
5 曹京宜, 王智峤, 李亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
6 Zhao Z Y, Wang J. Progresses in cathodic delamination of organic coatings from metals [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 116
6 赵增元, 王佳. 有机涂层阴极剥离作用研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 116
7 Wang G R, Shao Y W, Wang Y Q, et al. Effect of applied cathodic protection potential on cathodic delamination of damaged epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 235
7 王贵容, 邵亚薇, 王艳秋 等. 阴极保护电位对破损环氧涂层阴极剥离的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 235
8 Yang B Y, Wang Z W, Ma Y L. Research progress of layered double hydroxides in corrosion protection of metallic materials [J]. Surf. Technol., 2020, 49(12): 137
8 杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展 [J]. 表面技术, 2020, 49(12): 137
9 Pan M Q, Wang L T, Ding X, et al. The research progress of self-healing anti-corrosion coatings [J]. Mater. China, 2018, 37: 19
9 潘梦秋, 王伦滔, 丁璇 等. 自修复防腐涂层研究进展 [J]. 中国材料进展, 2018, 37: 19
10 Zhang Y, Fan W J, Zhang T F, et al. Review of intelligent self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
10 张勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299
11 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
11 高浩东, 崔宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
12 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
12 刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
13 Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
13 文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309
14 Liu T, Ma L W, Wang X, et al. Self-healing corrosion protective coatings based on micro/nanocarriers: a review [J]. Corros. Commun., 2021, 1: 18
doi: 10.1016/j.corcom.2021.05.004
15 Ye S N, Wang P, Sun Y C, et al. Research advances in microcapsuled self-healing coatings materials [J]. Surf. Technol., 2016, 45(6): 91
15 叶三男, 王培, 孙阳超 等. 微胶囊填充型自修复涂层材料研究进展 [J]. 表面技术, 2016, 45(6): 91
16 Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Del., 2016, 13: 977
doi: 10.1517/17425247.2016.1169271
17 Papoulis D. Halloysite based nanocomposites and photocatalysis: a review [J]. Appl. Clay Sci., 2019, 168: 164
doi: 10.1016/j.clay.2018.11.009
18 Bertolino V, Cavallaro G, Milioto S, et al. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials [J]. Carbohydr. Polym., 2020, 245: 116502
doi: 10.1016/j.carbpol.2020.116502
19 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem., 2008, 112C: 958
20 Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle [J]. J. Am. Chem. Soc., 2012, 134: 1853
doi: 10.1021/ja210258y
21 Poornima V P, El-Gawady Y M H, Al-Maadeed M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating [J]. Ind. Eng. Chem. Res., 2016, 55: 11186
doi: 10.1021/acs.iecr.6b02736
22 Asadi N, Naderi R, Mahdavian M. Synergistic effect of imidazole dicarboxylic acid and Zn2+ simultaneously doped in halloysite nanotubes to improve protection of epoxy ester coating [J]. Prog. Org. Coat., 2019, 132: 29
23 Khan A, Hassanein A, Habib S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection [J]. ACS Appl. Mater. Interfaces, 2020, 12: 37571
doi: 10.1021/acsami.0c08953
24 Yuan P, Tan D Y, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects [J]. Appl. Clay Sci., 2015, 112/113: 75
25 Liu M X, Jia Z X, Jia D M, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite [J]. Prog. Polym. Sci., 2014, 39: 1498
doi: 10.1016/j.progpolymsci.2014.04.004
26 Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds [J]. Adv. Mater., 2016, 28: 1227
doi: 10.1002/adma.201502341
27 White R D, Bavykin D V, Walsh F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions [J]. Nanotechnology, 2012, 23: 065705
28 Falcón J M, Sawczen T, Aoki I V. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings [J]. Front. Mater., 2015, 2: 69
29 Abdullayev E, Joshi A, Wei W B, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide [J]. ACS Nano, 2012, 6: 7216
doi: 10.1021/nn302328x pmid: 22838310
30 Zhang A B, Pan L, Zhang H Y, et al. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite [J]. Colloids Surf., 2012, 396A: 182
31 Yu D, Wang J, Hu W, et al. Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer [J]. Mater. Des., 2017, 129: 103
doi: 10.1016/j.matdes.2017.05.033
32 Shu Z, Chen Y, Zhou J, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications [J]. Appl. Clay Sci., 2015, 112/113: 17
33 Liu M X, Guo B C, Du M L, et al. Natural inorganic nanotubes reinforced epoxy resin nanocomposites [J]. J. Polym. Res., 2008, 15: 205
doi: 10.1007/s10965-007-9160-4
34 Li C P, Liu J G, Qu X Z, et al. A general synthesis approach toward halloysite-based composite nanotube [J]. J. Appl. Polym. Sci., 2009, 112: 2647
doi: 10.1002/app.29652
35 Yuan P, Southon P, Liu Z W, et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane [J]. J. Phys. Chem., 2008, 112C: 15742
36 Luo P, Zhang J S, Zhang B, et al. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal [J]. Ind. Eng. Chem. Res., 2011, 50: 10246
doi: 10.1021/ie200951n
37 Zhang J H, Zhang D H, Zhang A Q, et al. Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method [J]. J. Reinf. Plast. Compos., 2013, 32: 713
doi: 10.1177/0731684412472745
38 Albdiry M T, Yousif B F. Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes [J]. Mater. Des., 2013, 48: 68
doi: 10.1016/j.matdes.2012.08.035
39 Abdullayev E, Abbasov V, Tursunbayeva A, et al. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys [J]. ACS Appl. Mater. Interfaces, 2013, 5: 4464
doi: 10.1021/am400936m
40 Cui M M, Njoku D I, Li B W, et al. Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: the responses of smart microcapsules to corrosive entities [J]. Corros. Commun., 2021, 1: 1
doi: 10.1016/j.corcom.2021.06.001
41 Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole [J]. ACS Appl. Mater. Interfaces, 2009, 1: 1437
doi: 10.1021/am9002028
42 Joshi A, Abdullayev E, Vasiliev A, et al. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors [J]. Langmuir, 2013, 29: 7439
doi: 10.1021/la3044973
43 Adsul S H, Bagale U D, Sonawane S H, et al. Release rate kinetics of corrosion inhibitor loaded halloysite nanotube-based anticorrosion coatings on magnesium alloy AZ91D [J]. J. Magnes. Alloys, 2021, 9: 202
44 ShchukinA E, Shchukin D, Grigoriev D. Halloysites and mesoporous silica as inhibitor nanocontainers for feedback active powder coatings [J]. Prog. Org. Coat., 2018, 123: 384
45 Wang M, Wang J H, Hu W B. Preparation and corrosion behavior of Cu-8-HQ@HNTs/epoxy coating [J]. Prog. Org. Coat., 2020, 139: 105434
46 Asadi N, Naderi R, Mahdavian M. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating [J]. Corros. Sci., 2019, 151: 69
doi: 10.1016/j.corsci.2019.02.022
47 Chen X J, Hu D C, Zhang Z L, et al. In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating [J]. J. Alloy. Compd., 2019, 811: 151986
doi: 10.1016/j.jallcom.2019.151986
48 Manasa S, Jyothirmayi A, Siva T, et al. Effect of inhibitor loading into nanocontainer additives of self-healing corrosion protection coatings on aluminum alloy A356.0 [J]. J. Alloy. Compd., 2017, 726: 969
doi: 10.1016/j.jallcom.2017.08.037
49 Zahidah K A, Kakooei S, Ismail M C, et al. Halloysite nanotubes as nanocontainer for smart coating application: a review [J]. Prog. Org. Coat., 2017, 111: 175
50 Thanawala K, Khanna A S, Raman R K S, et al. Smart anti-corrosive self-healing coatings using halloysite nanotubes as host for entrapment of corrosion inhibitors [A]. Proceedings of the Australasian Corrosion Association Annual Conference: Corrosion and Prevention 2015 [C]. Adelaide, Australia, 2015
51 Molaei A, Amadeh A, Yari M, et al. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate [J]. Mater. Sci. Eng., 2016, 59C: 740
52 Sun M, Yerokhin A, Bychkova M Y, et al. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy [J]. Corros. Sci., 2016, 111: 753
doi: 10.1016/j.corsci.2016.06.016
53 Njoku D I, Cui M M, Xiao H G, et al. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques [J]. Sci. Rep., 2017, 7: 15597
doi: 10.1038/s41598-017-15845-0
[1] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.