Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 389-394    DOI: 10.11902/1005.4537.2020.088
  研究报告 本期目录 | 过刊浏览 |
胺液脱除CO2系统空冷器腐蚀规律研究
刘骁飞, 王春雨, 周俊锋, 金浩哲(), 王超
浙江理工大学流动腐蚀研究所 杭州 310018
Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution
LIU Xiaofei, WANG Chunyu, ZHOU Junfeng, JIN Haozhe(), WANG Chao
Institute of Flow Induced Corrosion, Zhejiang Sci-tech University, Hangzhou 310018, China
全文: PDF(2549 KB)   HTML
摘要: 

采用热力学Kent-Eisenberg (KE) 模型建立了贫胺液空冷器工艺仿真模型,通过Aspen plus工艺模拟软件,分析了空冷器降温 (41.96~83.40 ℃) 过程中热稳定盐、有机酸和CO2等腐蚀性介质的变化规律。结果显示,空冷器前三排管束中气相摩尔分数较小,气相中热稳定盐和CO2的摩尔分数分别占到55%和45%,为空冷器管束腐蚀的关键危害源。通过建立空冷管束流体动力学仿真模型,分析管束内部气相流动特性,得知空冷器第二排9~12、20、21、24、27~40号管束气相分率较大,属于腐蚀高风险区域,该结果与实际空冷器管束腐蚀位置相符合。

关键词 热稳定盐CO2脱除KE模型贫胺液空冷器腐蚀    
Abstract

The air cooler process with lean amine liquid was computationally simulated by means of Kent-Eisenberg (KE) model, while the variations of heat-stable salt, organic acid, CO2 and other corrosive media during the cooling process in the temperature range of 83.40 ℃ to 41.96 ℃ were analyzed by means of soft wear Aspen plus. The results show that although the gas phase fraction of the first three rows of air cooler tube bundles is small, but within the gas phase, the molar fraction of heat-stable salt and CO2 is 55% and 45%, respectively, in fact, which may be the key hazard source for corrosion of air cooler tube bundles. Following the analysis results of the flow characteristics in air-cooled tube bundles, it follows that the high-risk corrosion regions are located at the second row tube bundles of the air cooler, namely, the tube number No.9~12, 20, 21, 24, 27~40, which are consistent with the actual corrosion locations of the tube bundle during the operation of the air cooler with lean amine liquid in the factory.

Key wordsheat-stabilized salt    CO2 removal    Kent-Eisenberg (KE) model    lean amine liquid air cooler    corrosion
收稿日期: 2020-05-20     
ZTFLH:  TE624  
基金资助:国家重点研发计划课题(2017YFF0210403);国家自然科学基金(U1909216)
通讯作者: 金浩哲     E-mail: haozhe2007@163.com
Corresponding author: JIN Haozhe     E-mail: haozhe2007@163.com
作者简介: 刘骁飞,男,1988年生,博士,讲师

引用本文:

刘骁飞, 王春雨, 周俊锋, 金浩哲, 王超. 胺液脱除CO2系统空冷器腐蚀规律研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 389-394.
Xiaofei LIU, Chunyu WANG, Junfeng ZHOU, Haozhe JIN, Chao WANG. Corrosion Mechanism of Air Cooler in a CO2 Removal System with Amine Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 389-394.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.088      或      https://www.jcscp.org/CN/Y2021/V41/I3/389

图1  MDEA脱除CO2工艺流程图
Chemical equationEquilibrium constant equation
RR'NH2+K1H++RR'NHK1=c(H+)c(RR'NH2+)
RR'NCOO-+H2OK2RR'NH+HCO3-K2=c(HCO3-)c(RR'NCOO-)
H2O+CO2K3H++HCO3-K3=c(H+)c(HCO3-)c(CO2)
H2OK4H++OH-K4=c(H+)c(OH-)
HCO3-K5H++CO32-K5=c(H+)c(CO32-)c(HCO3-)
H2SK6H++HS-K6=c(H+)c(HS-)c(H2S)
HS-K7H++S2-K7=c(H+)c(S2-)c(HS-)
表1  H2S-CO2-胺液化学平衡体系涉及化学反应
图2  工艺仿真模型
图3  模拟数据与实际数据对比图
图4  胺液吸收工艺腐蚀机理图
图5  气液两相质量流量随温度变化规律曲线
图6  气相中热稳定盐和CO2随温度的变化规律
图7  气相中有机酸和H2O随温度的变化规律
图8  液相中热稳定盐和CO2摩尔分数随温度变化规律
图9  液相中H2O和有机酸摩尔分数随温度变化规律
图10  水相体积分数分布云图
图11  空冷器各排管束内气相分数分布曲线
1 Liu F, Li S H, Zhao Y J. The use of MDEA and DEA blended solution in Changqin oilfield [J]. Petrol. Instrum., 2006, 20(3): 81
1 刘峰, 李曙华, 赵玉君. MDEA、DEA混合溶液在长庆油田的使用评估 [J]. 石油仪器, 2006, 20(3): 81
2 Singto S, Supap T, Idem R, et al. The effect of chemical structure of newly synthesized tertiary amines used for the post combustion capture process on carbon dioxide (CO2): Kinetics of CO2 absorption using the stopped-flow apparatus and regeneration, and heat input of CO2 regeneration [J]. Energy Procedia., 2017, 114: 852
3 Zhang N, Pan Z, Zhang L, et al. Decarburization characteristics of coalbed methane by membrane separation technology [J]. Fuel, 2019, 242: 470
4 Rooney P C, DuPart M S, Bacon T R. Effect of heat stable salts on MDEA solution corrosivity [J]. Hydrocarb. Process., 1997, 76: 65
5 Luo F. Determination of heat stable salts amine by solid-phase extraction coupled with ion chromatography [J]. J. Instrum. Anal., 2004, 23(4): 84
5 罗芳. 固相萃取-离子色谱法分析胺液中的热稳态盐离子组成 [J]. 分析测试学报, 2004, 23(4): 84
6 Wu G L, Wang K Y. Discussion about application of methyldiethanolamine desulfurization process [J]. Special. Petrochem., 2004, (6): 37
6 吴国良, 王开岳. 关于N-甲基二乙醇胺法脱硫工艺的探讨 [J]. 精细石油化工, 2004, (6): 37
7 Cummings A L, Mecum S M. Remove heat stable salts for better amine plant performance [J]. Hydrocarb. Process., 1998, 77: 63
8 Borhani T N G, Afkhamipour M, Azarpour A, et al. Modeling study on CO2 and H2S simultaneous removal using MDEA solution [J]. J. Ind. Eng. Chem., 2016, 34: 344
9 Yan X Q, Li J, Peng Z C, et al. Study on the effect of Heat stable salts on MDEA solution's decarbonization and desulfurization performance [J]. Chem. Eng. Oil Gas, 2010, 39: 294
9 颜晓琴, 李静, 彭子成等. 热稳定盐对MDEA溶液脱硫脱碳性能的影响 [J]. 石油与天然气化工, 2010, 39: 294
10 Hamada M, Zewail T, Farag H. Study of corrosion behaviour of A106 carbon steel absorber for CO2 removal in amine promoted hot potassium carbonate solution (Benfield solution) [J]. Corros. Eng. Sci. Technol., 2013, 49: 209
11 He S, Gao C Y, Zhang L. Research progress on corrosion of carbon steel during process of capture CO2 with Monoethanolamine solution [J]. Corros. Sci. Prot. Technol., 2018, 30: 454
11 贺三, 高超洋, 张岭. MEA捕集CO2腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 454
12 Ghiasi M M, Abedi-Farizhendi S, Mohammadi A H. Modeling equilibrium systems of amine‐based CO2 capture by implementing machine learning approaches [J]. Environ. Prog. Sustain. Energy, 2019, 38: 13160
13 Ghiasi M M, Mohammadi A H. Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions [J]. J. Nat. Gas Sci. Eng., 2014, 18: 39
14 Panahi H, Eslami A, Golozar M A. Corrosion and stress corrosion cracking initiation of grade 304 and 316 stainless steels in activated Methyl Diethanol Amine (aMDEA) solution [J]. J. Nat. Gas Sci. Eng., 2018, 55: 106
15 Fan Y L. Application of Aspen Plus in decarbonization of MDEA amine solution [J]. Chem. Eng. Des., 2019, 29(3): 8
15 樊义龙. Aspen Plus在MDEA胺液脱碳过程中的应用 [J]. 化工设计, 2019, 29(3): 8
16 Ma Y, Zhang J L, Wang X X, et al. Simulation of natural gas methyldiethanolamine decarbonization and desulphurization process [J]. Chem. Eng., 2015, 43(4): 69
16 马云, 张吉磊, 王新星等. 天然气甲基二乙醇胺法脱硫脱碳工艺过程模拟分析 [J]. 化学工程, 2015, 43(4): 69
17 Xiao L, Chen N, Liu S, et al. Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2-H2O system [J]. Int. J. Greenh. Gas Control, 2016, 53: 160
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[3] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[4] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[5] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[6] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[7] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[8] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[11] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[12] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[13] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[14] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[15] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.