|
|
空间分辨技术在金属腐蚀原位监测中的应用 |
赵鹏雄, 武玮, 淡勇( ) |
西北大学化工学院 西安 710069 |
|
Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion |
ZHAO Pengxiong, WU Wei, DAN Yong( ) |
School of Chemical Engineering, Northwest University, Xi'an 710069, China |
[1] |
Wang Q H, Gong T. Analysis of Fukushima nuclear power accident and its revelation [J]. Southern Power Syst. Technol., 2011, 5(3): 17
|
[1] |
(王庆红, 龚婷. 福岛核电事故分析及其启示 [J]. 南方电网技术, 2011, 5(3): 17)
|
[2] |
Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil Gas, 2017, 29(5): 157
|
[2] |
(王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157)
|
[3] |
Zhou H M, Tang L S. Leakage accident analysis of first absorption column in melamine unit [J]. China Chem. Ind. Equip., 2018, 20(3): 21
|
[3] |
(周海明, 唐联生. 三聚氰胺装置一吸塔泄漏事故分析 [J]. 中国化工装备, 2018, 20(3): 21)
|
[4] |
Zhou W, Tong L H, Xia S, et al. Cause analysis of explosive and flammable accident occurred in pipeline for cyclohexane oxidation [J]. Process Equip. Piping, 2018, 55(3): 69
|
[4] |
(周文, 童良怀, 夏尚等. 环己烷氧化管道爆燃事故原因技术分析 [J]. 化工设备与管道, 2018, 55(3): 69)
|
[5] |
Chen F Q, Fu D M, Zhou K, et al. Development and application of corrosion resistance probe monitoring technology [J]. Corros. Sci. Prot. Technol., 2017, 29: 669
|
[5] |
(陈凤琴, 付冬梅, 周珂等. 电阻探针腐蚀监测技术的发展与应用 [J]. 腐蚀科学与防护技术, 2017, 29: 669)
|
[6] |
Xu Y Z, Huang Y, Wang X N, et al. Experimental study on pipeline internal corrosion based on a new kind of electrical resistance sensor [J]. Sens. Actuat., 2016, 224B: 37
|
[7] |
Yang D, Chen J S, Han Q, et al. Preparation of hot-dip Zn-Al-Mg alloy coating on steel wire and its electrochemical corrosion behavior [J]. Mater. Prot., 2008, 41(11): 1
|
[7] |
(杨栋, 陈建设, 韩庆等. 钢丝热镀Zn-Al-Mg合金层及其电化学腐蚀行为 [J]. 材料保护, 2008, 41(11): 1)
|
[8] |
Zhao H L, Su X D, Qin Q D. Microstructure and corrosion behavior of friction stir welding seam of 6063 aluminum alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 1140
|
[8] |
(赵宏龙, 苏向东, 秦庆东. 6063铝合金搅拌摩擦焊焊缝组织特征与腐蚀行为研究 [J]. 特种铸造及有色合金, 2018, 38: 1140)
|
[9] |
Song S Z, Yin L H, Wu J, et al. Corrosion electrochemistry of brass tube in simulated circlating cooling system [J]. J. Chem. Ind. Eng. (China), 2005, 25: 121
|
[9] |
(宋诗哲, 尹立辉, 武杰等. 模拟循环冷却系统黄铜管的腐蚀电化学 [J]. 化工学报, 2005, 25: 121)
|
[10] |
Ikeuba A I, Zhang B, Wang J Q, et al. SVET and SIET study of galvanic corrosion of Al/MgZn2 in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2018, 165: C180
|
[11] |
Xia F, Liao K X, Jing H. Effect of chloride ions on localized corrosion behaviors of scratch-defected coating in gas pipeline wall [J]. Mater. Prot., 2017, 50(9): 36
|
[11] |
(夏凤, 廖柯熹, 景红. Cl-对天然气管道内涂层破损处局部腐蚀的影响 [J]. 材料保护, 2017, 50(9): 36)
|
[12] |
Feng H W, Singh A, Wu Y P, et al. SECM/SKP and SVET studies on mitigation of N80 steel corrosion by some polymers [J]. New J. Chem., 2018, 42: 11404
|
[13] |
Yang W H, Hu R G, Ye C Q, et al. Corrosion behaviors of 316 stainless steel weldment studied by array reference electrodes [J]. Electrochemistry, 2011, 17: 373
|
[13] |
(杨旺火, 胡融刚, 叶陈清等. 阵列参比电极法研究316不锈钢焊缝腐蚀行为 [J]. 电化学, 2011, 17: 373)
|
[14] |
Liu J Q, Wu J Q. Development of machine vision system and its application [J]. Mechan. Eng. Automat., 2010, (1): 215
|
[14] |
(刘金桥, 吴金强. 机器视觉系统发展及其应用 [J]. 机械工程与自动化, 2010, (1): 215)
|
[15] |
Kazuya Y. Translated by Chen R T, Peng M G. The Basis and Applications of CCD/CMOS Image Sensors [M]. Peking: Science Press, 2011: 3
|
[15] |
(Kazuya著. 陈榕庭, 彭美桂译. CCD/CMOS图像传感器基础与应用 [M]. 北京: 科学出版社, 2011: 3)
|
[16] |
Zhang S H, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized Type 304 stainless steel [J]. Corros. Sci., 2005, 47: 1049
|
[17] |
Kamaya M, Haruna T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel [J]. Corros. Sci., 2007, 49: 3303
|
[18] |
Kovac J, Alaux C, Marrow T J, et al. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corros. Sci., 2010, 52: 2015
|
[19] |
Bolivar J, Frégonèse M, Réthoré J, et al. Evaluation of multiple stress corrosion crack interactions by in-situ digital image correlation [J]. Corros. Sci., 2017, 128: 120
|
[20] |
Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
|
[21] |
Poon T C, Liu J P. Introduction to Modern Digital Holography: with MATLAB [M]. Cambridge: Cambridge University Press, 2014: 118
|
[22] |
Takaki Y, Matsumoto Y, Nakajima T. Color image generation for screen-scanning holographic display [J]. Opt. Express, 2015, 23: 26986
pmid: 26480360
|
[23] |
Yuan B Y, Li Z H, Tong S, et al. In situ monitoring of pitting corrosion on stainless steel with digital holographic surface imaging [J]. J. Electrochem. Soc., 2019, 166: C3039
|
[24] |
Klages P E, Rotermund M K, Rotermund H H. Simultaneous holographic, ellipsometric, and optical imaging of pitting corrosion on SS 316LVM stainless steel [J]. Corros. Sci., 2012, 65: 128
doi: 10.1016/j.corsci.2012.08.023
|
[25] |
Asgari P, Pourvais Y, Abdollahi P, et al. Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel [J]. Mater. Des., 2017, 125: 109
doi: 10.1016/j.matdes.2017.03.085
|
[26] |
Baruchel J, Buffiere J Y, Maire E, et al. X-ray Tomography in Material Science [M]. Paris: Hermes Science Publications, 2000
|
[27] |
Maire E, Withers P J. Quantitative X-ray tomography [J]. Int. Mater. Rev., 2014, 59: 1
|
[28] |
Lu Y, Chiu Y L, Jones I P. Three-dimensional analysis of the microstructure and bio-corrosion of Mg-Zn and Mg-Zn-Ca alloys [J]. Mater. Charact., 2016, 112: 113
|
[29] |
Bradley R S, Liu Y, Burnett T L, et al. Time‐lapse lab‐based X‐ray nano‐CT study of corrosion damage [J]. J. Microsc., 2017, 267: 98
doi: 10.1111/jmi.12551
pmid: 28419456
|
[30] |
Shi J J, Ming J, Zhang Y M, et al. Corrosion products and corrosion-induced cracks of low-alloy steel and low-carbon steel in concrete [J]. Cem. Concr. Compos., 2018, 88: 121
doi: 10.1016/j.cemconcomp.2018.02.002
|
[31] |
Almuaili F A, McDonald S A, Withers P J, et al. Application of a quasi in situ experimental approach to estimate 3-D pitting corrosion kinetics in stainless steel [J]. J. Electrochem. Soc., 2016, 163: C745
|
[32] |
Almuaili F A, McDonald S A, Withers P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel [J]. Corros. Sci., 2017, 125: 12
|
[33] |
Örnek C, Léonard F, McDonald S A, et al. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires [J]. npj Mater. Degradat., 2018, 2: 10
|
[34] |
Sun Y Y. Optical Microscopic Analysis [M]. 2nd Ed. Beijing: Tsinghua University Press, 2003
|
[34] |
(孙业英. 光学显微分析 [M]. 第2版. 北京: 清华大学出版社, 2003)
|
[35] |
Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J]. Corros. Sci., 2000, 42: 1433
doi: 10.1016/S0010-938X(99)00143-2
|
[36] |
Wang Y F, Cheng G X, Li Y. Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.%NaCl solutions using in-situ and 3-D measuring microscope [J]. Corros. Sci., 2016, 111: 508
|
[37] |
Zhao Z J, Frankel G S. On the first breakdown in AA7075-T6 [J]. Corros. Sci., 2007, 49: 3064
doi: 10.1016/j.corsci.2007.02.001
|
[38] |
Green B A, Steward R V, Kim I, et al. Insitu observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass [J]. Intermetallics, 2009, 17: 568
|
[39] |
Li Y. Novel electrochemical techniques with time/sPatial resolution for corrosion investigations-from instrumental methods to applications [D]. Xiamen: Xiamen University, 2009
|
[39] |
(李彦. 金属腐蚀研究中具有时间—空间分辨的电化学技术-从仪器方法到实际应用 [D]. 厦门: 厦门大学, 2009)
|
[40] |
Xiao H Q. The design and experimental research on slow strain rate stress corrosion in-situ testing instrument [D]. Changchun: Jilin University, 2017
|
[40] |
(肖慧琼. 慢应变速率应力腐蚀原位测试装置设计与试验研究 [D]. 长春: 吉林大学, 2017)
|
[41] |
Zhu Y, Wang Y P, Chen W X. Formation and Microscopic Analysis of SEM Images [M]. Beijing: Beijing University Press, 1991
|
[41] |
(朱宜, 汪裕苹, 陈文雄. 扫描电镜图像的形成处理和显微分析 [M]. 北京: 北京大学出版社, 1991)
|
[42] |
Zhu L. SEM and its application in material science [J]. J. Jilin Instit. Chem. Technol., 2007, 24(2): 81
|
[42] |
(朱琳. 扫描电子显微镜及其在材料科学中的应用 [J]. 吉林化工学院学报, 2007, 24(2): 81)
|
[43] |
Zou Y, Pan C X, Fu Q, et al. Insitu observations for corrosion process at fusion boundary of Cr5Mo dissimilar steel welded joints in H2S containing solution [J]. Acta Metall. Sin., 2005, 41: 421
|
[43] |
(邹杨, 潘春旭, 傅强等. Cr5Mo异种钢焊接熔合区H2S腐蚀过程的“原位”观察 [J]. 金属学报, 2005, 41: 421)
|
[44] |
Li X D, Wang X S, Ren H H, et al. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy [J]. Corros. Sci., 2012, 55: 26
doi: 10.1016/j.corsci.2011.09.025
|
[45] |
Wang Y F, Cheng G G, Wu W, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions [J]. Appl. Surf. Sci., 2015, 349: 746
doi: 10.1016/j.apsusc.2015.05.053
|
[46] |
Wang X S, Fan J H. SEM online investigation of fatigue crack initiation and propagation in cast magnesium alloy [J]. J. Mater. Sci., 2004, 39: 2617
|
[47] |
Li X D, Mu Z T, Liu Z G. SEM in situ study on pre-corrosion and fatigue cracking behavior of LY12CZ aluminum alloy [J]. Key Eng. Mater., 2013, 525/526: 81
|
[48] |
Liu Z. Research on stress corrosion behavior of 2A14 aluminum alloy welded joints [D]. Harbin: Harbin Institute of Technology, 2016
|
[48] |
(刘震. 2A14铝合金焊接接头应力腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
|
[49] |
Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Phys. Rev. Lett., 1986, 56: 930
doi: 10.1103/PhysRevLett.56.930
pmid: 10033323
|
[50] |
Zhu J, Sun R G. Introduction to atomic force microscope and its manipulation [J]. Life Sci. Instrum., 2005, 3(1): 22
|
[50] |
(朱杰, 孙润广. 原子力显微镜的基本原理及其方法学研究 [J]. 生命科学仪器, 2005, 3(1): 22)
|
[51] |
Liang S, Qiao L J, Chu W Y. AFM Study on stress corrosion promoting local plastic deformation [J]. Chin. Sci. Bull., 2002, 34(3): 178
|
[51] |
(梁松, 乔利杰, 褚武扬. 应力腐蚀促进局部塑性变形的原子力显微镜研究 [J]. 科学通报, 2002, 34(3): 178)
|
[52] |
Qu J E, Guo X P, Wang H R, et al. Corrosion behavior of pure aluminum in FeCl3 solution [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1460
|
[53] |
Izquierdo J, Eifert A, Souto R M, et al. Simultaneous pit generation and visualization of pit topography using combined atomic force-scanning electrochemical microscopy [J]. Electrochem. Commun., 2015, 51: 15
|
[54] |
Martin F A, Bataillon C, Cousty J. Insitu AFM detection of pit onset location on a 304L stainless steel [J]. Corros. Sci., 2008, 50: 84
doi: 10.1016/j.corsci.2007.06.023
|
[55] |
Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
doi: 10.1016/j.apsusc.2018.01.047
|
[56] |
Lu L. The study of corrosion behavior of 35CrMo steel in CO2 saturated solution [D]. Chengdu: Southwest Petroleum University, 2011
|
[56] |
(鲁亮. 35CrMo钢在CO2饱和溶液中的腐蚀行为研究 [D]. 成都: 西南石油大学, 2011)
|
[57] |
Payton O D, Picco L, Scott T B. High-speed atomic force microscopy for materials science [J]. Int. Mater. Rev., 2016, 61: 473
doi: 10.1080/09506608.2016.1156301
|
[58] |
Moore S, Burrows R, Picco L, et al. A study of dynamic nanoscale corrosion initiation events by HS-AFM [J]. Faraday Discuss., 2018, 210: 409
pmid: 29974088
|
[59] |
Reimer L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer Verlag, 2013, 36
|
[60] |
Wang Z L. New developments in transmission electron microscopy for nanotechnology [J]. Adv. Mater., 2003, 15: 1497
doi: 10.1002/(ISSN)1521-4095
|
[61] |
San X Y, Zhang B, Wu B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM [J]. Corros. Sci., 2018, 130: 143
doi: 10.1016/j.corsci.2017.11.001
|
[62] |
Wan Y, Tan J, Zhu S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM [J]. Corros. Sci., 2019, 152: 226
doi: 10.1016/j.corsci.2019.03.017
|
[63] |
Song Z W, Xie Z H. A literature review of in situ transmission electron microscopy technique in corrosion studies [J]. Micron, 2018, 112: 69
pmid: 29929172
|
[64] |
Schilling S, Janssen A, Zaluzec N J, et al. Practical aspects of electrochemical corrosion measurements during in situ analytical transmission electron microscopy (TEM) of austenitic stainless steel in aqueous media [J]. Microsc. Microanal., 2017, 23: 741
doi: 10.1017/S1431927617012314
pmid: 28784199
|
[65] |
Zhang B, Ma X L. A review-pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35: 1455
doi: 10.1016/j.jmst.2019.01.013
|
[66] |
Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel [J]. Corros. Sci., 2015, 100: 295
doi: 10.1016/j.corsci.2015.08.009
|
[67] |
Zhang Y, Gore P, Rong W, et al. Quasi-in-situ STEM-EDS insight into the role of Ag in the corrosion behaviour of Mg-Gd-Zr alloys [J]. Corros. Sci., 2018, 136: 106
doi: 10.1016/j.corsci.2018.02.058
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|