Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 474-478    DOI: 10.11902/1005.4537.2019.206
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究
邓培昌1, 钟杰1, 王坤2, 胡杰珍2(), 李子运2, 岑楚欣1, 沈小涵1
1 广东海洋大学化学与环境学院 湛江 524088
2 广东海洋大学机械与动力工程学院 湛江 524088
Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate
DENG Peichang1, ZHONG Jie1, WANG Kun2, HU Jiezhen2(), LI Ziyun2, CHEN Chuxin1, SHEN Xiaohan1
1 College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
2 College of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
全文: PDF(2005 KB)   HTML
摘要: 

采用“风筝悬挂湿烛”大气Cl-沉降速率样品收集方法,利用离子色谱法分析样品溶液Cl-的浓度,获得了夏季不同月份、不同垂直高度近海大气中Cl-沉降速率,利用Pearson相关系数法分析了环境因素对Cl-沉降速率的影响。结果表明:南海岛屿夏季三个月大气Cl-沉降速率在10~100 m范围内的垂向分布呈反“S”分布;南海岛屿夏季高空大气Cl-沉降速率从6月到8月逐渐降低。

关键词 Cl-风筝悬挂法沉降速率Pearson相关系数    
Abstract

The deposition rate of Cl- is the important influence factor for the corrosion of high-altitude marine engineering equipment in marine atmosphere. For sampling the Cl- deposition rate at different heights, a so called “kite hanging wet-candles”method was invented, while the Cl- concentrations of the collected samples were analyzed by ion chromatography. The effect of environmental factors on the Cl- deposition rate was analyzed by the Pearson correlation coefficient method. At the Hainan island of the South China Sea, the distribution of the Cl- deposition rates exhibits a reverse “S”-shape in the range of 10 m to 100 m vertical scope in the summer time, however, the Cl- deposition rates were gradually reduced in the period from June to August.

Key wordsCl-    kite hanging wet-candle method    sedimentation rate    Pearson correlation coefficient method
收稿日期: 2019-11-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51801033);广东大学生“海之帆-启航计划”(qhjh2018zr15)
通讯作者: 胡杰珍     E-mail: jiezhen0520@163.com
Corresponding author: HU Jiezhen     E-mail: jiezhen0520@163.com
作者简介: 邓培昌,男,1975年生,博士,副教授

引用本文:

邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
Peichang DENG, Jie ZHONG, Kun WANG, Jiezhen HU, Ziyun LI, Chuxin CHEN, Xiaohan SHEN. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 474-478.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.206      或      https://www.jcscp.org/CN/Y2020/V40/I5/474

图1  Cl-沉降速率采样装置示意图
图2  湿烛示意图
Date M/D102030405060708090100
6/25225.4140.283.861.278.6107.395.789.683.777.5
7/30129.977.539.251.855.066.667.774.973.974.2
8/2570.427.830.233.844.661.358.559.652.948.9
表1  不同月份中不同垂直高度Cl-沉降速率

Date

M/D

Wind directionWind speed m·s-1Relative humidity / %

Temperature

6/25120~1503.97731
7/3060~905.49228
8/25120~15059626
表2  不同月份的环境因素
图3  不同垂直高度与Cl-沉降速率的关系
图4  夏季高空Cl-沉降速率变化图
VariableParameterValue
Wind directionPearson correlation coefficient0.029
Significance (double-tailed T test)0.880
Wind speedPearson correlation coefficient-0.439*
Significance (double-tailed T test)0.015
HumidityPearson correlation coefficient-0.570**
Significance (double-tailed T test)0.001
TemperaturePearson correlation coefficient0.591**
Significance (double-tailed T test)0.001
表3  Cl-沉降速率与环境因素的Pearson相关性
[1] Wang Z Y, Yu G C, Han W. A survey of the atmospheric corrosiveness of natural environments in China [J]. Corros. Prot., 2003, 24: 323
[1] (王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查 [J]. 腐蚀与防护, 2003, 24: 323)
[2] Pardo A, Otero E, Merino M C, et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels [J]. Corrosion, 2000, 56: 411
doi: 10.5006/1.3280545
[3] Wallinder I O, Zhang X, Goidanich S, et al. Corrosion and run off rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate [J]. Sci. Total Environ., 2014, 472: 681
doi: 10.1016/j.scitotenv.2013.11.080
[4] Shibaeva T V, Laurinavichyute V K, Tsirlina G A, et al. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions [J]. Corros. Sci., 2014, 80: 299
doi: 10.1016/j.corsci.2013.11.038
[5] Cheng X D, Xu L, Fan Y P, et al. Corrosion behavior of different bars in chloride ion corrosion [J]. Corros. Prot., 2016, 37: 407
[5] (程旭东, 徐立, 范燕平等. 氯离子侵蚀下异类钢筋的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 407)
[6] He J X, Qin X Z, Yi P, et al. Corrosion exposure study on Q235 steel in marine atmospheric [J]. Surf. Technol., 2006, 35(4): 21
[6] (何建新, 秦晓洲, 易平等. Q235钢海洋大气腐蚀暴露试验研究 [J]. 表面技术, 2006, 35(4): 21)
[7] Wang F P, Chen H, Li X G. Effect of deposition of electrolytes on atmospheric corrosion of Zn under thin liquid film [J]. J. Univ. Sci. Technol Beijing, 2002, 24(4): 445
[7] (王凤平, 陈华, 李晓刚. 盐粒沉降对Zn大气腐蚀的影响 [J]. 北京科技大学学报, 2002, 24(4): 445)
[8] Chen J Q, Tang Q H, Guo Z H, et al. Comparative study of chlorides deposition rates determination methods in marine atmosphere-wet candle and dry plate methods [J]. Equip. Environ. Eng., 2017, 14(6): 77
[8] (陈建琼, 唐其环, 郭赞洪等. 海洋大气氯离子监测方法—湿烛法与干片法对比研究 [J]. 装备环境工程, 2017, 14(6): 77)
[9] Hu J Z, Liu Q B, Hu H H, et al. Cl- sedimentation rate in atmosphere of tropical island [J]. Corros. Prot., 2018, 39: 463
[9] (胡杰珍, 刘泉兵, 胡欢欢等. 热带海岛大气中氯离子沉降速率 [J]. 腐蚀与防护, 2018, 39: 463)
[10] Liu J J, Zhang Z X, Wu Z H. Effects of atmospheric environment on corrosion of wind turbines [J]. Corros. Prot., 2018, 39: 463
[10] (刘俊珺, 张志训, 武占海. 大气环境对风电机组腐蚀的影响 [J]. 腐蚀与防护, 2018, 39: 463)
[11] Wang K, Hu J Z, Wang G, et al. Research status of a pipeline erosion-corrosion apparatus [J]. J. Guangdong Ocean Univ., 2018, 38(3): 92
[11] (王坤, 胡杰珍, 王贵等. 管流式冲刷腐蚀实验装置的研究进展 [J]. 广东海洋大学学报, 2018, 38(3): 92)
[12] Zhao R, Jin Z Q, Cao J R, et al. Numercial simulation of chloride ions transportation considering temperature and humidity in marine environment [J]. Ocean Eng., 2018, 36(1): 99
[12] (赵蕊, 金祖权, 曹杰荣等. 海洋环境中温湿度变化对混凝土氯离子传输研究 [J]. 海洋工程, 2018, 36(1): 99)
[1] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[2] 田雪凯, 王海龙, 程旭东, 孙晓燕. 混凝土裂缝形态参数对Cl-传输性能影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 309-316.
[3] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[4] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[5] 吕晨曦, 魏英华, 李京, 孙超. 聚合物改性砂浆中钢筋的电化学行为及聚合物改性混凝土抗Cl-渗透性[J]. 中国腐蚀与防护学报, 2015, 35(5): 467-473.
[6] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[7] 岳著文, 李镜培, 杨博, 邵伟, 吕韬. Cl-在钢筋混凝土板一维双向扩散的分离变量法解答[J]. 中国腐蚀与防护学报, 2014, 34(1): 95-100.
[8] 杜雅莉, 张俊喜, 蒋俊, 原徐杰, 王灵芝, 马行驰. Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程[J]. 中国腐蚀与防护学报, 2013, 33(4): 331-338.