Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 175-181    DOI: 10.11902/1005.4537.2019.030
  研究报告 本期目录 | 过刊浏览 |
X70管线钢在大庆土壤环境中微生物腐蚀行为研究
陈旭1, 李帅兵1, 郑忠硕1, 肖继博2, 明男希1, 何川1()
1 辽宁石油化工大学石油天然气工程学院 抚顺 113001
2 中国石油化工股份有限公司北京燕山分公司 北京 102500
Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area
CHEN Xu1, LI Shuaibing1, ZHENG Zhongshuo1, XIAO Jibo2, MING Nanxi1, HE Chuan1()
1 School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
2 SINOPEC Beijing Yanshan Petrochemical Co. , Ltd, Beijing 102500, China
全文: PDF(3020 KB)   HTML
摘要: 

采用极化曲线、电化学阻抗谱技术和SEM、EDS、XRD分析方法研究了X70管线钢在含硫酸盐还原菌 (SRB) 的大庆土壤模拟溶液中的微生物腐蚀行为。结果表明,SRB在大庆土壤环境模拟溶液中生长周期分为对数生长期、衰减期和死亡期3个阶段。SRB的新陈代谢对大庆土壤环境产生显著影响:pH值在SRB生长的前2 d降低,然后呈逐渐上升趋势。氧化还原电位在SRB对数生长期降低,在衰减期和死亡期呈增加趋势。溶液电导率在SRB的对数生长期时增加,在衰减期和死亡期呈整体减小趋势。在SRB对数生长期,游离的SRB利用其新陈代谢产物H将硫酸盐还原成硫化物,促进了点蚀的发生;在SRB衰减期,腐蚀产物成团簇状,膜层致密,减缓腐蚀;在SRB死亡期,生物膜脱落,腐蚀产物膜有明显裂纹出现,形成微观腐蚀电池,导致X70管线钢的腐蚀加剧。X70管线钢在SRB的大庆土壤中腐蚀产物为FeS和Fe3O4

关键词 X70管线钢大庆土壤硫酸盐还原菌腐蚀生长周期环境参数    
Abstract

The influence of sulfate-reducing bacteria (SRB) on the corrosion behavior of X70 pipeline steel in an artificial solution for simulation of the corrosivity of soil at Daqing area was studied by polarization curves, electrochemical impedance spectroscopy and SEM, EDS and XRD methods. The results showed that the growth cycle of SRB in the simulated solution could be differentiated as three phases: logarithmic growth phase, decay phase and death phase. SRB metabolism had significant effect on the corrosivity of the simulated solution. The pH value decreased in the first 2 d of SRB growth and then increased. Redox potential, Eh, decreased in the logarithmic growth phase, and increased in the decay and death phases. Conductivity of the solution increased in the logarithmic growth phase and decreased in the decay phase and death phases. During SRB logarithmic growth phase, the free SRB reduced sulfate into sulfide through its metabolic product H to promote the pitting corrosion of X70 steel. During the decay phase of SRB, the corrosion products formed as clusters-like, while the film was dense, which slowed down the corrosion. During the death of SRB, the biofilm dropped off and obvious cracks appeared, thereby microscopic corrosion cell formed, leading to intensified corrosion of X70 pipeline steel. Corrosion products of X70 pipeline steel in the simulated solution with SRB were mainly FeS and Fe3O4.

Key wordsX70 pipeline steel    daqing soil    sulfate-reducing bacteria corrosion    growth cycle    environmental parameter
收稿日期: 2019-03-13     
ZTFLH:  TG174.3 6  
基金资助:国家自然科学基金(51574147);辽宁省教育厅重点项目(L2017LZD004)
通讯作者: 何川     E-mail: cx0402@sina.com
Corresponding author: HE Chuan     E-mail: cx0402@sina.com
作者简介: 陈旭,女,1974年生,博士,教授

引用本文:

陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
Xu CHEN, Shuaibing LI, Zhongshuo ZHENG, Jibo XIAO, Nanxi MING, Chuan HE. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 175-181.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.030      或      https://www.jcscp.org/CN/Y2020/V40/I2/175

图1  SRB在大庆土壤模拟液中的生长曲线
图2  溶液pH值随SRB生长过程的变化
图3  溶液氧化还原电位随SRB生长过程的变化曲线
图4  溶液电导率随SRB生长过程的变化曲线
图5  X70钢在含SRB的大庆土壤模拟溶液中的SEM像和EDS结果
图6  X70钢在含SRB的大庆土壤模拟溶液中浸泡14 d的XRD谱
图7  X70钢在含SRB的大庆模拟溶液中浸泡不同时间的EIS图
图8  X70钢在含SRB的大庆土壤模拟溶液中EIS等效电路图

Time

d

Rs

Ω·cm2

CPE1

F·cm-2

n1

Rf

Ω·cm2

CPE2

F·cm-2

n2

Rct

Ω·cm2

466.091.2×10-3---22.482.10×10-30.864.25×104
768.680.5×10-30.89405.110.27×10-3---1.71×105
1070.492.5×10-30.89207.100.33×10-3---4.66×104
1465.532.8×10-30.85191.000.30×10-3---3.73×104
表1  X70钢在含SRB的大庆土壤模拟溶液中EIS拟合结果
图9  X70钢在含SRB的大庆土壤模拟溶液中浸泡不同时间的极化曲线
[1] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating [J]. Corros. Sci., 2009, 51: 2242
[2] Chen G F, Xie Y J. Application of fault tree analysis in oil and gas pipelines leakage [J]. Contemp. Chem. Ind., 2014, (7): 1342
[2] (陈广芳, 谢禹钧. 事故树分析法在油气输送管道泄漏事故中的应用 [J]. 当代化工, 2014, (7): 1342)
[3] Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2001, 26: 515
[4] AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
[5] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
[6] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[7] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[8] Song B Q, Chen X, Ma G Y, et al. Effect of SRB on corrosion behavior of X70 pipeline steel in near-neutral pH solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 212
[8] (宋博强, 陈旭, 马贵阳等. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 212)
[9] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[10] Xu J, Sun C, Yan M C, et al. Electrochemical behavior of steel A36 under disbonded coating in the presence of sulfate-reducing bacteria [J]. Mater. Chem. Phys., 2013, 142: 692
[11] Lu X R, Du C W, Li X G, et al. Corrosion behavior of X70 steel in Daqing soils [J]. Corros. Prot., 2008, 29: 503
[11] (鲁新如, 杜翠薇, 李晓刚等. X70钢在大庆两种土壤中的腐蚀行为 [J]. 腐蚀与防护, 2008, 29: 503)
[12] Wang S, Li X G, Huang Y Z, et al. Effect of ferrous ion on sulfate-reducing bacteria influenced corrosion of mild steel [J]. J. Aeronaut. Mater., 2012, 32(1): 51
[12] (汪崧, 李晓刚, 黄一中等. Fe2+对碳钢硫酸盐还原菌腐蚀行为的影响 [J]. 航空材料学报, 2012, 32(1): 51)
[13] Du N, Ye C, Tian W M, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy [J]. J. Mater. Eng., 2014, (6): 68
[13] (杜楠, 叶超, 田文明等. 304不锈钢点蚀行为的电化学阻抗谱研究 [J]. 材料工程, 2014, (6): 68)
[14] Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochim. Acta, 2007, 52: 6084
[15] Li F S, An M Z, Liu G Z, et al. Roles of sulfur-containing metabolites by SRB in accelerating corrosion of carbon steel [J]. Chin. J. Inorg. Chem., 2009, 25: 13
[15] (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌的含硫代谢产物在加速碳钢腐蚀中的作用 [J]. 无机化学学报, 2009, 25: 13)
[16] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536
[16] (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌对18-8不锈钢点蚀行为的影响 [J]. 金属学报, 2009, 45: 536)
[17] Zhu Y Y, Zheng C B, Li Y T, et al. The change in corrosion parameter with SRB growth in sea mud [J]. Marine Sci., 2006, 30(11): 37
[17] (朱永艳, 郑传波, 李言涛等. 海泥中硫酸盐还原菌数量变化对主要腐蚀环境因子的影响 [J]. 海洋科学, 2006, 30(11): 37)
[18] Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution [J]. Corros. Sci. Prot. Technol., 2017, 29: 103
[18] (陈旭, 高凤娇, 宋武琦等. CO2对X70钢在近中性pH值溶液中硫酸盐还原菌腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 103)
[19] Usher K M, Kaksonen A H, Bouquet D, et al. The role of bacterial communities and carbon dioxide on the corrosion of steel [J]. Corros. Sci., 2015, 98: 354
[20] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
[20] (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ) 电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346)
[21] Liu T, Zhang Y F, Chen X, et al. Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 112
[21] (刘彤, 张艳飞, 陈旭等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 112)
[22] Sun C, Xu J, Wang F H. Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797
[23] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals [J]. Geobiology, 2007, 5: 401
[24] Liu H W, Liu H F, Qin S, et al. Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27: 7
[24] (刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查 [J]. 腐蚀科学与防护技术, 2015, 27: 7)
[25] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
[26] Zheng Q, Li J, Du Y L, et al. Influence of sulfate reducing bacteria on corrosion behavior of HSn70-1A alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 38
[26] (郑强, 李进, 杜一立等. 硫酸盐还原菌对HSn70-1A铜合金电化学腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2008, 28: 38)
[27] Song W Q. Microbial corrosion of 2205 duplex stainless steel in oilfield-produced water [J]. Int. J. Electrochem. Sci., 2018, 13: 675
[28] Zhou P, Qin S, Ye Q, et al. Monitoring and controlling growth of biofilm on carbon steel surface in oilfield sewage [J]. Mater. Prot., 2013, 46(11): 20
[28] (周平, 秦双, 叶琴等. 油田污水中碳钢表面生物膜的生长监测与控制 [J]. 材料保护, 2013, 46(11): 20)
[1] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[2] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[3] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[4] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[5] 孔德军,吴永忠,龙丹,周朝政. 激光冲击处理对X70管线钢焊接接头H2S应力腐蚀影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[6] 贾志军,李晓刚,梁平,王力伟. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241-245.
[7] 张亮 李晓刚 杜翠薇 梁平. 外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 353-359.
[8] 邵绪分 . X70管线钢近中性环境氢致开裂与阳极溶解的关系[J]. 中国腐蚀与防护学报, 2008, 28(2): 76-80 .
[9] 王荣 . 氢对X70管线钢预裂纹试样断裂性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 81-85 .
[10] 张际标; 王燕华; 姜应律; 王佳 . 微液滴现象与大气腐蚀—— Ⅰ. 微液滴的形成与扩展[J]. 中国腐蚀与防护学报, 2006, 26(4): 207-210 .
[11] 刘学庆; 唐晓; 王佳 . 金属腐蚀速度与海水环境参数相关模型的人工神经网络分析[J]. 中国腐蚀与防护学报, 2005, 25(1): 11-14 .
[12] 李明星 . X70管线钢在模拟土壤介质中裂纹扩展量化模型[J]. 中国腐蚀与防护学报, 2004, 24(3): 163-167 .