|
|
304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 |
刘辉1,2,邱玮1( ),冷滨2( ),俞国军2 |
1. 长沙理工大学能源与动力工程学院 长沙 410114 2. 中国科学院上海应用物理研究所 上海 201800 |
|
Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF |
Hui LIU1,2,Wei QIU1( ),Bin LENG2( ),Guojun YU2 |
1. School of Energy and Power Engineering, Changsha University of Scinece & Technology, Changsha 410114, China 2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
引用本文:
刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
Hui LIU,
Wei QIU,
Bin LENG,
Guojun YU.
Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 51-58.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.001
或
https://www.jcscp.org/CN/Y2019/V39/I1/51
|
[1] | Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system [J]. Physics, 2016, 45: 578 | [1] | 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统 [J]. 物理, 2016, 45: 578 | [2] | Jiang M H, Xu H J, Dai Z M. Advanced fission energy program-TMSR nuclear energy system [J]. Bull. Chin. Acad. Sci., 2012, 27: 366 | [2] | 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR核能系统 [J]. 中国科学院院刊, 2012, 27: 366 | [3] | Serp J, Allibert M, Benes O, et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives [J]. Prog. Nucl. Energ., 2014, 77, 308 | [4] | Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI Heat Transfer Loop [R]. Oak Ridge: Oak Ridge National Lab, 2006 | [5] | Zhu Y S, Hou J, Yu G J, et al. Effects of exposing temperature on corrosion performance of weld joint of a Ni-Mo-Cr alloy [J]. J. Fluorine Chem., 2016, 182: 69 | [6] | Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt [J]. J. Fluorine Chem., 2009, 130: 67 | [7] | Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K) F at 700 ℃ [J]. J. Fluorine Chem., 2015, 178: 14 | [8] | Charalampos A, Anselmo T C, Alexandre Y K C, et al. Technical description of the “mark 1” pebble-bed fluoride-salt-cooled high-temperature reactor (PB-FHR) power plant [R]. UCBTH-14-002. Berkeley: Department of Nuclear Engineering University of California, 2014 | [9] | Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and Hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192 | [10] | Zheng G Q. Corrosion behavior of alloys in molten fluoride salts [D]. Wisconsin: The University of Wisconsin-Madison, 2015 | [11] | Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J].Chin J.. Soc. Corros. Prot., 2015, 35: 543 | [11] | 丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543 | [12] | Koger J W. Alloy compatibility with LiF-BeF2 salts containing ThF4 and UF4 [R]. ORNL-4286. Oak Ridge: Oak Ridge National Lab, 1972 | [13] | Kondo M, Nagasaka T, Sagara A, et al. Metallurgical study on corrosion of austenitic steels in molten salt LiF-BeF2 [J]. J. Nucl. Mater., 2009, 386: 685 | [14] | Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the Advanced high-temperature Reactor (AHTR) [R]. ORNL/TM-2006/12. Oak Ridge: Oak Ridge National Lab, 2006 | [15] | Schneider M, Kremmer K, L?mmel C, et al. Galvanic corrosion of metal/ceramic coupling [J]. Corros. Sci., 2014, 80: 191 | [16] | Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes [J]. Met. Sci. Heat Treat., 1985, 27: 184 | [17] | Zeng C L, Li J, Zhou T. Galvanic corrosion in molten salts: A discussion of the corrosion mechanism of two-phase Ni-20Cr-20/30Cu alloys in eutectic (Li, K)2CO3 at 650 ℃ [J]. Oxid. Met., 2005, 64: 207 | [18] | Fontana M G, Staehle R W. Chromium depletion and void formation in Fe-Ni-Cr alloys during molten salt corrosion and related processes [A]. In: Koger J W. Advances in Corrosion Science and Technology [M]. New York: Plenum Press, 1974 | [19] | Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments [J]. J. Nucl. Mater., 2013, 437: 201 | [20] | Zhang S L, Li M J, Wang X B, et al. Intergranular corrosion of 18-8 austenitic stainless steel [J].Chin J.. Soc. Corros. Prot., 2007, 27: 124 | [20] | 张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀 [J]. 中国腐蚀与防护学报, 2007, 27: 124 | [21] | Smith A F. The diffusion of chromium in type 316 stainless steel [J]. Met. Sci., 1975, 9: 375 | [22] | Olson L C, Sridharan K, Anderson M, et al. Intergranular corrosion of high temperature alloys in molten fluoride salts [J]. Mater. High Temp., 2010, 27: 145 | [23] | Bruemmer S M. Grain boundary chemistry and intergranular failure of austenitic stainless steels [J]. Mater. Sci.Forum, 1989, 46: 309 | [24] | Zheng G Q, He L F, Carpenter D, et al. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt [J]. J. Nucl. Mater., 2016, 482: 147 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|