Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 295-305    DOI: 10.11902/1005.4537.2015.142
  研究报告 本期目录 | 过刊浏览 |
无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为
赵洪涛,陆卫中(),李京,郑玉贵
中国科学院金属研究所 沈阳 110016
Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water
Hongtao ZHAO,Weizhong LU(),Jing LI,Yugui ZHENG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3623 KB)   HTML
摘要: 

通过EIS对3种无溶剂环氧防腐涂层在60 ℃下流速为2 m/s、含1%(质量分数) 石英砂的模拟海水环境中的失效行为进行了研究,并利用SEM观察了冲刷后涂层的表面形貌,利用激光共聚焦显微镜 (CLSM) 观察了涂层/金属的断面形貌。结果表明,与静态条件相比,流动含砂条件明显加速了无溶剂涂层的失效过程。冲刷条件下,胺类固化环氧粉末涂层和酚醛胺固化环氧液体涂层由于固化交联速度慢,结构比较致密,失效过程主要分为3个阶段:介质在涂层中传输阶段、基体金属腐蚀发生阶段和基体金属腐蚀发展与涂层失效阶段;酚醛固化环氧粉末涂层由于固化速度快,内部孔隙较多,涂层较快形成贯穿通道,失效中期阶段缩短且不明显,失效过程主要为两个阶段。研究结果表明,涂层体系内部存在孔隙是加速涂层失效的一个重要因素。

关键词 无溶剂环氧防腐涂层冲刷海水电化学行为孔隙    
Abstract

The electrochemical behavior of three solvent-free epoxy coatings on Q345E carbon steel during corrosion-erosion induced by flowing slurry of simulated sea water with 1% (mass fraction) of sand at 60 ℃ was investigated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM), respectively. The results showed that the flowing slurry induced erosion aggravated the deterioration of coatings. The amine-cured epoxy powder coating and phenolic aldehyde amine-cured liquid epoxy coating were cured with slow speed and thus much densified, accordingly, their deterioration process experienced three stages: firstly, the inward migration of corrosive medium; secondly, the corrosion initiation of the substrate metal; thirdly, the corrosion propagation of the substrate metal beneath the coating and finally the failure of coatings. On the contrary, the phenolic aldehyde-cured epoxy powder coating was cured with fast speed and thus much porous, its deterioration process experienced two stages with a shortened second stage. Therefore,the existence of pores in the coating is one of the important factors for inducing failure of coatings during corrosion-erosion.

Key wordssolvent-free epoxy coating    erosion    sea water    electrochemical behavior    pore
    
基金资助:中国科学院知识创新工程项目 (KGCX2-YW-219) 资助

引用本文:

赵洪涛,陆卫中,李京,郑玉贵. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 295-305.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.142      或      https://www.jcscp.org/CN/Y2016/V36/I4/295

图1  冲刷实验装置示意图
图2  环氧粉末涂层A在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的Bode图
图3  环氧粉末涂层A在60 ℃下3.5%NaCl溶液中静态浸泡不同时间的Bode图
图4  环氧粉末涂层B在60 ℃下3.5%NaCl溶液中流动冲刷条件下浸泡不同时间的Bode图
图5  环氧粉末涂层B在60 ℃下3.5%NaCl溶液中静态浸泡不同时间的Bode图
图6  无溶剂环氧液体涂层C在60 ℃下3.5%NaCl溶液中流动冲刷条件下浸泡不同时间的Bode图
图7  无溶剂环氧涂层C在60 ℃下3.5%NaCl溶液中静态浸泡不同时间的Bode图
图8  环氧粉末涂层A在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的Nyquist图
图9  环氧粉末涂层B在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的Nyquist图
图10  无溶剂环氧液体涂层C在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的Nyquist图
图11  无溶剂环氧涂层体系等效电路图
Timed RcΩcm2 n1 QcFcm-2 RctΩcm2 n2 QdlFcm-2 RdiffΩcm2 n3 QdiffFcm-2 LHcm2 RLΩcm2
0 1.9×1011 1.00 7.5×10-11 --- --- --- --- --- --- --- ---
1.5 4.8×1010 0.91 2.5×10-10 --- --- --- --- --- --- --- ---
4 1.3×109 0.89 3.4×10-10 --- --- --- --- --- --- --- ---
9 2.6×108 0.89 3.7×10-10 1.8×108 0.79 1.5×10-8 --- --- --- --- ---
12.5 6.5×107 0.89 2.9×10-10 --- --- --- --- --- --- 1.2×109 9.6×108
18.5 3.9×105 1.00 9.1×10-11 3.4×105 1.00 8.5×10-11 4.7×105 0.33 2.1×10-7 --- ---
22 1.3×105 1.00 1.1×10-10 2.1×105 0.37 1.8×10-8 3.8×105 1.00 1.1×10-10 --- ---
26.5 7.9×104 0.20 6.8×10-8 2.1×105 1.00 1.3×10-10 1.3×105 1.00 3.4×10-10 --- ---
表1  环氧粉末涂层A在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的EIS拟合结果
Time / d Rc / Ωcm2 n1 Qc / Fcm-2 Rct / Ωcm2 n2 Qdl / Fcm-2 Rdiff / Ωcm2 n3 Qdiff / Fcm-2 Zw
0 1.2×1012 1.00 1.0×10-10 --- --- --- --- --- --- ---
1.5 5.0×1010 0.96 1.5×10-10 --- --- --- --- --- --- ---
4 4.2×1010 0.94 2.8×10-10 --- --- --- --- --- --- ---
9 8.9×106 0.96 2.1×10-10 8.50×107 0.37 2.6×10-9 --- --- --- 1.1×10-7
12.5 8.0×105 0.94 3.1×10-10 5.20×106 0.38 7.0×10-8 2.9×107 0.66 9.1×10-8 ---
15 1.0×106 0.93 3.1×10-10 6.30×106 0.49 4.1×10-8 4.6×106 1.00 2.0×10-6 ---
18.5 5.4×105 1.00 1.4×10-10 1.60×106 0.46 3.1×10-7 1.0×108 1.00 1.2×10-7 ---
22 1.7×105 0.86 9.2×10-10 2.30×106 0.57 4.1×10-7 7.7×1010 1.00 5.9×10-4 ---
26.5 4.8×105 0.89 5.8×10-10 2.55×106 0.46 4.4×10-7 3.4×106 1.00 2.0×10-7 ---
表2  环氧粉末涂层B在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的EIS拟合结果
Time / d Rc / Ωcm2 n1 Qc / Fcm-2 Rct / Ωcm2 n2 Qdl / Fcm-2 Rdiff / Ωcm2 n3 Qdiff / Fcm-2
0 7.5×1010 1.00 6.7×10-11 --- --- --- --- --- ---
1.5 3.3×1010 0.92 2.1×10-10 --- --- --- --- --- ---
4 7.7×109 0.91 2.4×10-10 --- --- --- --- --- ---
9 3.8×108 0.95 1.7×10-10 3.1×108 1.00 1.8×10-10 --- --- ---
12.5 3.5×107 0.95 1.7×10-10 8.3×106 0.66 1.1×10-9 --- --- ---
15 2.1×106 0.96 1.4×10-10 1.6×107 0.05 3.2×10-8 --- --- ---
18.5 2.9×108 0.95 1.8×10-10 1.0×109 0.26 3.2×10-9 --- --- ---
22 1.6×105 0.92 2.8×10-10 1.6×105 0.45 3.2×10-6 2.1×106 1.00 2.1×10-6
26.5 8.5×104 0.83 9.5×10-10 4.6×105 0.52 3.3×10-6 7.7×1014 1.00 2.1×10-6
表3  无溶剂环氧液体涂层C在60 ℃下3.5%NaCl溶液中冲刷条件下浸泡不同时间的EIS拟合结果
图12  60 ℃时环氧粉末涂层A在不同条件下Qc和|Z |0.01 Hz随时间的变化曲线
图13  60 ℃时环氧粉末涂层B在不同条件下Qc和 |Z |0.01 Hz随时间的变化曲线
图14  60 ℃时无溶剂环氧液体涂层C在不同条件下Qc和|Z |0.01 Hz随时间的变化曲线
图15  环氧粉末涂层A、B和无溶剂环氧涂层C体系的CLSM断面形貌图
图16  环氧粉末涂层B和A以及无溶剂环氧液体涂层C在26.5 d冲刷后表面SEM像
[1] Lau K.Corrosion of Epoxy-coated Reinforcement in Marine Bridges with Locally Deficient Concrete[M]. Florida: University of South Florida, 2010
[2] Yang H, Lu W Z, Li J, et al.Water absorption behavior of a kind of epoxy powder coating[J]. Corros. Sci. Prot. Technol., 2014, 26(5):420
[2] (杨海, 陆卫中, 李京等. 一种环氧粉末涂层的吸水性研究[J]. 腐蚀科学与防护技术, 2014, 26(5): 420)
[3] Yang H, Lu W Z, Li J, et al.Degradation behavior of fusion bonded epoxy powder coating on Q235 carbon steel in 1.5 mol/L NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2014, 34(4): 382
[3] (杨海, 陆卫中, 李京等. 环氧粉末涂层在1.5 mol/L NaCl溶液中的失效行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 382)
[4] Wei Y H, Zhang L X, Ke W.Comparison of the degradation behavior of fusion bonded epoxy powder coating systems under flowing and static immersion[J]. Corros. Sci., 2006, 48: 1449
[5] Thu Q L, Bierwagen G P, Touzain S.EIS and EN measurements for three different organic coatings on aluminum[J]. Prog. Org. Coat., 2001, 42: 179
[6] Wang Y, Bierwagen G P.A new acceleration factor for the testing of corrosion protective coating: flow-induced coating degradation[J]. J. Coat. Technol. Res., 2009, 6: 429
[7] Luo S Z, Lu Z J, Zheng Y G.Investigation on the relationship between erosion resistance and curing degree of epoxy powder coating[J]. J. Chin. Soc. Corros. Prot., 2000, 20(4): 193
[7] (骆素珍, 鲁自界, 郑玉贵. 环氧粉末涂层的冲蚀性能及其与固化度之间的关系[J]. 中国腐蚀与防护学报, 2000, 20(4): 193)
[8] Luo S Z, Zheng Y G, Li J, et al.Erosion resistance of epoxy powder coating[J]. Chin. J. Mater. Res., 2000, 14(5): 517)
[8] (骆素珍, 郑玉贵, 李劲等. 环氧粉末涂层的抗冲蚀性能[J]. 材料研究学报, 2000, 14(5): 517)
[9] Luo S Z, Zheng Y G, Li J, et al.Influence of content and size of sand in slurries on erosion behavior of epoxy powder coating[J]. Corros. Sci. Prot. Technol., 2002, 14(2): 63
[9] (骆素珍, 郑玉贵, 李劲等. 浆体含砂量和砂粒径对环氧粉末涂层冲蚀规律的影响[J]. 腐蚀科学与防护技术, 2002, 14(2): 63)
[10] Mobin M, Malik A U, Andijani I N, et al.Performance evaluation of some fusion-bonded epoxy coatings under water transmission line conditions[J]. Prog. Org. Coat., 2008, 62: 369
[11] Zhu C F, Xie R, Xue J H, et al.Studies of the impedance of models and water transport behavior of cathodically polarized coating[J]. Electrochem. Acta, 2011, 56: 5828
[12] Zhang J T, Hu J M, Zhang J Q, et al.Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS[J]. Prog. Org. Coat., 2004, 51: 145
[13] Zhang J T, Hu J M, Zhang J Q, et al.Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution[J]. Prog. Org. Coat., 2004,49: 293
[14] Mansfeld F, Tsai C H.Determination of coating deterioration with EIS I. Basic relationships[J]. Corrosion, 1991, 47: 958
[15] Walter G W.A review of impedance plot methods used for corrosion performance analysis of painted metals[J]. Corros. Sci., 1986,26: 681
[16] Brasher D M, Kingsbury A H.Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake[J]. J. Appl. Chem., 1954, 4: 62
[1] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[2] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[3] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[4] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[5] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[6] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[7] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[8] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[10] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[14] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[15] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.