Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 191-196    DOI: 10.11902/1005.4537.2015.091
  综合评述 本期目录 | 过刊浏览 |
海岸土壤环境对油气管道局部腐蚀的影响
唐晓(),时春涛,曹光,李焰
中国石油大学 (华东) 机电工程学院 青岛 266580
Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines
Xiao TANG(),Chuntao SHI,Guang CAO,Yan LI
College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(379 KB)   HTML
摘要: 

综述分析了海岸土壤环境对油气管道局部腐蚀的影响。首先,凝练了海岸土壤显著区别于陆地土壤和海底土壤的腐蚀环境特征,即具有高盐含量、高湿、与空气直接接触、气/液/固三相不均匀的组成结构和干湿交替变化等特点。其次,探讨了海岸土壤腐蚀环境因素对油气管道局部腐蚀发生和发展过程的影响。最后,分析了油气管道局部腐蚀研究思路和存在的难点,并对海岸土壤环境中管线钢的微区电化学研究方案进行了展望。

关键词 海岸管线工程海岸土壤环境油气管道局部腐蚀    
Abstract

The direct cause for the explosion accident occurred by Dong Huang pipeline is that the corrosion of pipeline was enhanced by coastal soil, which in turn resulted in thinning and then cracking of the pipe. Because localized corrosion cracking in coastal soils is a serious threat to the integrity and security for the pipeline, the effect of the coastal soil environment on localized corrosion for oil and gas pipelines was analyzed systematically. Typical corrosion environmental characteristics were acquired and then analyzed firstly for the specified coastal soil, which in general is rather different from the terrestrial soil and seabed soil distinctly. The coastal soil is characterized as a mixture of gas/liquid/solid multi-phases with high salt- and water-content and good air aeration, while it experiences dry-wet cycles periodically. The effect of the coastal soil environment on the initiation and propagation of localized corrosion for oil and gas pipelines is discussed. Finally, the trends and difficulties of the study in oil and gas pipeline localized corrosion are analyzed, and in the end, a scheme of micro-e electrochemical study is peculiarly prospected.

Key wordscoastal pipeline engineering    coastal soil environment    oil and gas pipeline    localized corrosion
收稿日期: 2015-05-13     
基金资助:山东省优秀中青年科学家科研奖励基金计划项目 (BS2010NJ025),中央高校基本科研费用专项资金项目和中国石油大学(华东)自主创新科研计划项目 (12CX04054A) 资助

引用本文:

唐晓,时春涛,曹光,李焰. 海岸土壤环境对油气管道局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
Xiao TANG, Chuntao SHI, Guang CAO, Yan LI. Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 191-196.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.091      或      https://www.jcscp.org/CN/Y2016/V36/I3/191

[1] State Council "11.22" Accident Investigation Team. Investigation report for “11.22” leakage explosion accident of Sinopec Dongying-Huangdao oil pipeline in Qingdao city, Shandong province [R]. 2014
[1] (国务院山东省青岛市“11.22”中石化东黄输油管道泄漏爆炸特别重大事故调查组. 山东省青岛市“11.22”中石化东黄输油管道泄漏爆炸特别重大事故调查报告 [R]. 2014)
[2] Cao C N.Natural Corrosion of China's Materials [M]. Beijing: Chemistry Industry Press, 2005: 449
[2] (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社,2005: 449)
[3] Weng Y J, Li X Y, Yang J P.A study on soil corrosion models in dagang oilfield[J]. Acta Petrol. Sin., 1996, 17(3): 137
[3] (翁永基, 李相怡, 杨建平. 大港油田土壤腐蚀模型研究[J]. 石油学报, 1996, 17(3): 137)
[4] Li X Y, Weng Y J, Zhang Y, et al.Assessment of soil corrosiovity in chegndao beach[J]. Oil Gas Storage Transp., 1999, 18(2): 50
[4] (李相怡, 翁永基, 张勇等. 埕岛滩海土壤腐蚀性评价[J]. 油气储运, 1999, 18(2): 50)
[5] Qian X K, Jiang X F.2014 Domestic and International Oil and Gas Industry Development Report [M]. Beijing: Petroleum Industry Pre-ss, 2015
[5] (钱兴坤, 姜学峰. 2014年国内外油气行业发展报告 [M]. 北京: 石油工业出版社, 2015)
[6] Yuan Y, Gao Q S, Liu Y.Gas pipeline corrosion analysis and countermeasures[J]. Oil-Gas field Surf. Eng., 2011, 30(8): 4
[6] (袁英, 高强生, 刘义. 天然气管道腐蚀分析与对策[J]. 油气田地面工程, 2011, 30(8): 4)
[7] Li G F, Yang W.Corrosion and protection of buried important pipelines[J]. Corros. Prot., 2009, 30(9): 620
[7] (李光福, 杨武. 埋地重要管线的腐蚀与防护[J]. 腐蚀与防护, 2009, 30(9): 620)
[8] Engineering Design Guide Editorial Board. Offshore Oil Engineering Design Guide: Offshore Oil Engineering Pipeline Design [M]. Beijing: Petroleum Industry Press, 2007: 249
[8] (《海洋石油工程设计指南》编委会. Offshore海洋石油工程设计指南: 海洋石油工程海底管道设计 [M]. 北京: 石油工业出版社, 2007: 249)
[9] Zhang X L.Corrosion protection, thermal insulation and weight coating of subsea pipeline[J]. Anticorros. Insul. Technol., 2009, 17(2): 4
[9] (张晓灵. 海底管道防腐保温及配重技术[J]. 防腐保温技术, 2009, 17(2): 4)
[10] Chen Y, Fei J Y, Wan B H, et al.Stress corrosion crack of buried X80 oil pipeline and its protection[J]. Mater. Heat Treat., 2011, 40(22): 51
[10] (陈叶, 费敬银, 万冰华等. 埋地X80石油管道的应力腐蚀与防护[J]. 热加工工艺, 2011, 40(22): 51)
[11] Robert L A, Neha R, Kip O F, et al.Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen[J]. Int. J. Fatigue, 2014, 59: 262
[12] Fassina A P, Brunella M F, Lazzari L, et al.Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels[J]. Eng. Fract. Mech., 2013, 103: 10
[13] Contreras A, Hernández S L, Orozco-Cruz R, et al.Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution[J]. Mater. Design, 2012, 35: 281
[14] Dong C F, Liu Z Y, Li X G, et al.Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. Int. J. Hydrogen Energy, 2009, 34(24): 9879
[15] Mohtadi-Bonab M A, Szpunar J A, Collins L, et al. Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments[J]. Int. J. Hydrogen Energy, 2014, 39(11): 6076
[16] Jia Y Z, Wang J Q, Han E-H.Stress corrosion cracking of X80 pipeline steel in near-neutral pH environment under constant load tests with and without preload[J]. J. Mater. Sci. Technol., 2011, 27(11): 1039
[17] Tang X, Cheng Y F.Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochim. Acta, 2009, 54(5): 1499
[18] Wang Z Y, Wang J Q, Han E-H, et al.Effect of mechanical factors on SCC initiation of pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28(5): 282
[18] (王志英, 王俭秋, 韩恩厚等. 力学因素对管线钢应力腐蚀开裂裂纹萌生的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 282)
[19] Lu B T, Luo J L, Norton P R, et al.Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Mater., 2009, 57(1): 41
[20] Xu L Y, Cheng Y F.Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corros. Sci., 2012, 64: 145
[21] Sun Q L, Cao B, Wu M S.Effect of fluctuant load frequency on stress corrosion cracking behavior of X70 steel welded joint[J]. Heat Treat. Met., 2008, 33(12): 28
[21] (孙齐磊, 曹备, 吴荫顺. 波动频率对X70钢焊接接头应力腐蚀行为的影响[J]. 金属热处理, 2008, 33(12): 28)
[22] Liu Z Y, Wang C P, Du C W, et al.Effect of applied potential on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution[J]. Acta Metall. Sin., 2011, 47(11): 1434
[22] (刘志勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2011, 47(11):1434)
[23] Liu Z Y, Li X G, Cheng Y F.Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization[J]. Electrochim. Acta, 2012, 60: 259
[24] Zhou J, Chen Y F, Li X, et al.A review of the study on the damage mechanism of corroded submarine pipeline under complex loadings[J]. Ocean Eng., 2008, 26(1): 127
[24] (周晶, 陈严飞, 李昕等. 复杂荷载作用下海底腐蚀管线破坏机理研究进展[J]. 海洋工程, 2008, 26(1): 127)
[25] Li J, Wang H B, Li Y.Main factors influencing marine pipeline service life and proposal of countermeasures[J]. Petrol. Eng. Constr., 2007, 33(2): 35
[25] (李军, 王洪彬, 李燕. 影响海底管道寿命的主要因素及防范建议[J]. 石油工程建设, 2007, 33(2): 35)
[26] Machuca L L, Bailey S I, Gubner R, et al.Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater[J]. Corros. Sci., 2013, 67: 242
[27] Chaves I A, Melchers R E.Pitting corrosion in pipeline steel weld zones[J]. Corros. Sci., 2011, 53(12): 4026
[28] Gomes W J S, Andr'e T B. Optimal inspection and design of onshore pipelines under external corrosion process[J]. Struct. Safety, 2014, 47: 48
[29] Ferreira C A M, Ponciano J A C, Vaitsman D S, et al. Evaluation of the corrosivity of the soil through its chemical composition[J]. Sci. Total Environ., 2007, 388(1-3): 250
[30] Meresht E S, Farahani T S, Neshati J.Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline[J]. Eng. Fail. Anal., 2011, 18(3): 963
[31] Lee S H, Oh W K, Kim J G.Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part II. Application to the evaluation of polyethylene and coal-tar enamel coatings[J]. Prog. Org. Coat., 2013, 76(4): 784
[32] Fu A Q, Tang X, Cheng Y F.Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe[J]. Corros. Sci., 2009, 51(1): 186
[33] Fu A Q, Cheng Y F.Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe[J]. Corros. Sci., 2009, 51(4): 914
[34] Xu L Y, Cheng Y F.Reliability and failure pressure prediction of various grades of pipeline steel in the presence of corrosion defects and pre-strain[J]. Int. J. Pres. Ves. Pip., 2012, 89: 75
[35] Chen W, Boven G van, Rogge R. The role of residual stress in neutral pH SCC of pipeline steels Part II: Crack dormancy[J]. Acta Mater., 2007, 55(1): 43
[36] Tang X, Cheng Y F.Localized dissolution electrochemistry at surface irregularities of pipeline steel[J]. Appl. Surf. Sci., 2008, 254(16): 5199
[37] Eslami A, Fang B, Kania R, et al.Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment[J]. Corros. Sci., 2010, 52(11): 3750
[38] Tang X, Cheng Y F.Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corros. Sci., 2011, 53(9): 2927
[1] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[2] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[3] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[4] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[5] 张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[6] 张新生,曹乃宁,李亚云. 基于Gumbel极值I型分布埋地油气管道的剩余寿命预测[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[7] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[8] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[9] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[10] 朱元良; 郭兴蓬 . 中性介质中碳钢腐蚀沉积膜下局部腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(5): 271-276 .
[11] 叶威; 李瑛; 王福会 . 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 129-134 .
[12] 欧阳维真 . 铁器文物在含氯离子水溶液中局部腐蚀闭塞区化学状态的变化[J]. 中国腐蚀与防护学报, 2004, 24(6): 364-367 .
[13] 刘大扬; 魏开金; 李文军 . 南海榆林海域环境因素对钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .
[14] 董泽华; 郭兴蓬; 郑家shen . 16Mn钢局部腐蚀中的电化学噪声特征[J]. 中国腐蚀与防护学报, 2002, 22(5): 290-294 .
[15] 许淳淳; 吴小梅; 刘幼平 . 用模拟闭塞电池方法研究十二烷基硫酸根对不锈钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2002, 22(3): 129-132 .