Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 265-270    DOI: 10.11902/1005.4537.2014.068
  研究报告 本期目录 | 过刊浏览 |
铸铁文物复合气相缓蚀剂的复配与研究
滕飞,井宇阳,胡钢()
Research of Compound Volatile Corrosion Inhibitors for Cast Iron Relics
Fei TENG,Yuyang JING,Gang HU()
School of Archaeology and Museology, Peking University, Beijing 100871, China
全文: PDF(943 KB)   HTML
摘要: 

以碳酸环己胺 (CHC) 为主体,通过与其它缓蚀剂复配,筛选出可用于铸铁文物保护的高效复合气相缓蚀剂。用极化曲线,电化学阻抗谱和XPS等手段研究了该复合气相缓蚀剂的缓蚀作用机理。结果表明:CHC与乌洛托品复配,具有良好的协同缓蚀效果,当乌洛托品与CHC以1∶4的质量比复配时,缓蚀率可达96.61%。该复合气相缓蚀剂是以抑制阳极反应为主的混合型缓蚀剂,能够和铸铁发生化学吸附而形成缓蚀性能良好的保护膜。

关键词 复合气相缓蚀剂铸铁缓蚀机理    
Abstract

Applying volatile corrosion inhibitors is an effective way to protect cast iron relics. Herewith several new formulas of compounds of cyclohexylamine carbonate (CHC) with various kinds of inhibitors were designed and prepared for cast iron. Then their performance of corrosion inhibition was studied by means of electrochemical measurements and XPS. Results show among others that CHC with methenamine exhibits significant synergistic effect, i.e. a compound of mixed methenamine and CHC with a mass ratio 1∶4 exhibits the highest inhibition efficiency up to 96.61%. This mix-type compound inhibitor, which mainly suppressed the anodic reaction, could be chemically absorbed on the cast iron surface to act as a well-functioned protective film for cast iron relics.

Key wordscompound volatile corrosion inhibitor    cast iron    inhibition mechanism
    
基金资助:教育部人文社会科学基金项目 (09YJC780002) 资助

引用本文:

滕飞,井宇阳,胡钢. 铸铁文物复合气相缓蚀剂的复配与研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 265-270.
Fei TENG, Yuyang JING, Gang HU. Research of Compound Volatile Corrosion Inhibitors for Cast Iron Relics. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 265-270.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.068      或      https://www.jcscp.org/CN/Y2015/V35/I3/265

图1  气相缓蚀性能实验装置示意图
No. VCI component Inhibition efficiency / % Inhibition description
A Blank --- Plenty of yellow rust and a little red rust
B CHC 80.08 Unevenly distributed rust
C CHC+Urotropine 84.32 A bit of red rust
D CHC+Sodium benzoate 44.07 Plenty of red and yellow rust
E CHC+BTA -32.63 Plenty of red rust
表1  不同缓蚀剂复配后的缓蚀结果
图2  不同缓蚀剂条件下铸铁电极的极化曲线
图3  不同缓蚀剂条件下铸铁电极的Nyquist图
No. VCI component Ecorr / mV Ba / mV Bc / mV
A Blank -739 351.59 -126.75
B CHC -789 1274.40 -125.61
C CHC+Urotropine -616 176.4 -166.35
D CHC+Sodium benzoate -687 302.6 -93.7
E CHC+BTA -719 295.26 -108.39
表2  不同缓蚀剂条件下铸铁电极极化曲线的电化学参数
图4  不同缓蚀剂条件下拟合的等效电路
No. VCI component Rs / Ω Rt / Ω W-R / Ω Rtotal / Ω
A Blank 6.506 229.5 --- 236.0
B CHC 6.203 135.8 1436 1578.0
C CHC+Urotropine 6.907 164.9 1707 1878.8
D CHC+Sodium benzoate 6.342 145.5 1700 1851.8
E CHC+BTA 5.433 52.06 807.2 864.7
表3  电化学阻抗的拟合参数值
图5  预膜前后铸铁试样的XPS全谱, Fe分谱和O分谱
图6  预膜后铸铁试样的N分谱
[1] Wang J L, Wu Y Q, Liu J. Effectiveness of corrosion inhibitors on bronze and cast iron with prefilming treatment[J]. Int. J. Electrochem. Sci., 2013, 8: 4631
[2] Yang C S, Wang J L, Zhang Z G. Reseach on corrosion products and removal of salts in iron ware from Huaguang Reef I[J]. CIESC J., 2011, 62(9): 2582 (杨传森, 王菊琳, 张治国. 华光礁出水铁器腐蚀产物及脱盐研究[J]. 化工学报, 2011, 62(9): 2582)
[3] Hu G, Lv G C, Xu C C, et al. Inhibitive effects of molybdenate on iron artifacts during desalination process[J]. Corros. Prot., 2007, 28(4): 191 (胡钢, 吕国诚, 许淳淳等. 铁质文物脱盐过程中的钼酸盐缓蚀作用[J]. 腐蚀与防护, 2007, 28(4): 191)
[4] Wu Y Q, Wang J L, Yang C S, et al. Auxiliary anode materials used for electrochenmical dechlorination of ancient relics of iron[J]. Corros. Sci. Prot. Technol., 2012, 24(2): 167 (吴玉清, 王菊琳, 杨传森等. 铁质文物电化学脱盐材料的研究[J]. 腐蚀科学与防护技术, 2012, 24(2): 167)
[5] Ding Y M, Xu C C, Wang J L. Volatile corrosion inhibitors (VCI) for iron relics[J]. Corros. Prot., 2006, 27(1): 1 (丁艳梅, 许淳淳, 王菊琳. 铸铁文物用气相缓蚀剂研究[J]. 腐蚀与防护, 2006, 27(1): 1)
[6] Cheng C M, Xing Y T, Shi J Y, et al. inhibition effect of urotropin for ultra-pure ferritic stainless steel[J]. Corros. Prot., 2013, 34(10):902 (程春茂, 邢燕婷, 石巨岩. 乌洛托品对超纯铁素体不锈钢酸洗的缓蚀效果[J]. 腐蚀与防护, 2013, 34(10): 902)
[7] Dong R F, Wu B Z, Chen T. Corrosion behavior of metal in antifreeze fluid containing sodium benzoate and benzotriazole[J]. J.Univ. Sci. Technol. Liaoning, 2012, 35(3): 230 (董荣芬, 吴宝珠, 陈涛. 防冻液中苯并三氮唑与苯甲酸钠对多种金属的缓蚀作用[J]. 辽宁科技大学学报, 2012, 35(3): 230)
[8] Wei G, Yang M, Xiong R C. A study of cyclohexylamine carbonate for the gas phase protection of chemical equipment[J]. Chem. Eng. Mach., 2000, 27(4): 190 (魏刚, 杨民, 熊蓉春. 碳酸环己胺用于化工装备气相保护的研究[J]. 化工机械, 2000, 27(4): 190)
[9] Cao C N. The Principle of Corrosion Electrochemistry[M]. 3rd ed. Beijing: Beijing University of Technology Press, 2008 (曹楚南.腐蚀电化学原理[M]. 第三版. 北京: 北京工业大学出版社, 2008)
[10] Wang X, Wang F, Zhang P. Electrochemical behavior of X80 steel in simulated soil solutions with high pH at different temperatures[J]. Corros. Prot., 2013, 34(4): 287 (王霞, 王飞, 张鹏. 不同温度下X80钢在高pH土壤模拟溶液中的腐蚀电化学行为[J]. 腐蚀与防护, 2013, 34(4): 287)
[11] Zhang T S,Zhang H,Gao H. Corrosion Inhibitors[M]. 2nd ed. Beijing: ChemicalIndustry Press, 2008 (张天胜,张浩,高红等. 缓蚀剂[M]. 第二版. 北京: 化学工业出版社, 2008)
[12] Graat P C J, Somers M A J. Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe2p spectra[J]. Appl. Surf. Sci., 1996, 100/101: 36
[13] Liu F, Chen Y. XPS study of Fe2p and Fe3s for Fe-containing compounds[J]. Anal. Test. Technol. Instru., 2001, 7(3): 166 (刘芬, 陈萦. 含铁化合物的Fe2p和Fe3s电子能谱研究[J]. 分析测试技术与仪器, 2001, 7(3): 166)
[14] Deng I G, Zhang L, Dai H X, et al. Strontium-doped lanthanum cobaltite and manganite: Highly active catalysts for toluene complete oxidation[J]. Ind. Eng. Chem. Res., 2008, 47: 8175
[15] Xiang M, Zhang Q, Wang W. Corrosion behavior of 20# steel in polyacrylamide flooding solution[J]. Corros. Sci. Prot. Technol., 2005, 17(3): 144 (项民, 张琦, 王为. 20#钢在聚丙烯酰胺驱油溶液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2005, 17(3): 144)
[16] Bureau C, Valin F, Lecayon G, et al. Study of ultrathin polyamide-6,6 films on clean copper and platinum[J]. J. Vac. Sci. Technol., 1997, 15(2)A: 353
[1] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[2] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[3] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[4] 崔君军, 张雅静, 王琳琳, 陈晓刚, 张国志. 耐海水腐蚀球墨铸铁成分优化设计及其抗蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 537-543.
[5] 鞠玉琳, 李焰. 气相缓蚀剂的研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 27-36.
[6] 石文艳,夏媛,雷武,夏明珠,王风云,张其平, 张跃华. 5种氨基酸对铁缓蚀机理的分子动力学模拟[J]. 中国腐蚀与防护学报, 2011, 31(6): 478-482.
[7] 胡胜 康笑阳 付朝阳. 米糠提取液作为盐酸酸洗缓蚀剂的研究[J]. 中国腐蚀与防护学报, 2009, 29(2): 149-153.
[8] 张茜; 郭兴蓬; 陈振宇 . 十二胺在碳钢表面的吸附行为[J]. 中国腐蚀与防护学报, 2007, 27(5): 288-291 .
[9] 顾宝珊; 刘建华; 纪晓春 . 铈盐对铝合金的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2006, 26(1): 53-58 .
[10] 许淳淳; 岳丽杰; 欧阳维真 . 碱性溶液中阴极极化对模拟铸铁文物局部腐蚀闭塞区化学和电化学状态的影响[J]. 中国腐蚀与防护学报, 2005, 25(5): 295-298 .
[11] 张慧敏; 潘家祯; 王志文 . 埋地铸铁海水管失效分析[J]. 中国腐蚀与防护学报, 2005, 25(3): 183-186 .
[12] 周欣; 杨怀玉; 蔡铎昌; 沈长斌; 陶晓杰; 韩冬云 . 低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J]. 中国腐蚀与防护学报, 2005, 25(2): 79-83 .
[13] 何新快 . 气相缓蚀剂的研究现状及展望[J]. 中国腐蚀与防护学报, 2004, 24(4): 245-248 .
[14] 刘钧泉; 涂小慧; 李卫; 齐健婷 . 热强碱中腐蚀测定方法的研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 116-119 .
[15] 李燕; 张关永; 陆柱 . 除氧中性水中钨酸盐对碳钢缓蚀机理研究[J]. 中国腐蚀与防护学报, 2000, 20(6): 349-354 .