Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 558-565    DOI: 10.11902/1005.4537.2013.184
  本期目录 | 过刊浏览 |
含铜双相不锈钢在无菌/含菌环境下的耐蚀性研究
王永霞, 向红亮, 杨彩萍, 刘东
福州大学机械工程及自动化学院 福州 350116
Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria
WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
全文: PDF(1962 KB)   HTML
摘要: 

对经固溶处理的含铜双相不锈钢材料进行了540,560和580 ℃时效处理。利用电化学工作站研究了固溶及时效处理试样在无菌/含菌培养基中的耐蚀性,同时采用OM及XPS检测手段对固溶处理试样及抗菌性最优的经560 ℃时效处理试样菌液腐蚀后的生物膜形貌及表层Cu的腐蚀产物进行了分析。结果表明,在无菌培养基中,固溶处理试样最耐蚀,经时效处理的试样随时效处理温度的升高,耐蚀性下降;在含菌培养基中,经560和580 ℃时效处理试样的耐蚀性比其在无菌环境中的有所提高,固溶处理及经540 ℃时效处理试样的耐蚀性比其在无菌环境中的有所下降。固溶处理试样表面存在厚大疏松状生物膜,表层腐蚀产物中CuCO3含量相对较低,细菌腐蚀导致试样在含菌介质中的耐蚀性比其在无菌介质中的差;经560 ℃时效处理试样的表层覆盖稀薄生物膜,细菌对试样腐蚀破坏作用弱,表层腐蚀产物中CuCO3含量高,CuCO3对试样的保护作用大于细菌的破坏作用,使得其在菌液中的耐蚀性比其在无菌环境中的有所提高。

关键词 含铜双相不锈钢时效温度富铜相生物膜    
Abstract

Effects of aging treatment at 540~580 ℃ on the corrosion resistance of a copper-bearing duplex stainless were studied by electrochemical measurement in culture medium with and without bacteria. The surface morphology of the biofilms and the corrosion products formed on the steels solution treated and aging treated at 560 ℃ were characterized by OM and XPS. The results show that in the culture medium without bacteria, but the proportion of coarse copper-rich phase in the corrosion products on the aged steel increases with the increasing aging temperature, correspondingly the corrosion resistance of the aged steels became worse; in comparison with those in the culture medium without bacteria, the corrosion resistance of the steels solution treated and aged at 540 ℃ is inferior, while of the steels aged at 560 and 580 ℃ is better in the culture medium with bacteria, correspondingly a thicker porous microbiological biofilm with low CuCO3 content formed on the steel solution treated in the culture medium with bacteria, which possessed less protectiveness, while a thin and dense biofilm with high CuCO3 content formed on the steel aged at 560 ℃, which could enhance the corrosion resistance of the steel.

Key wordscopper-bearing duplex stainless steel    aged temperature    copper-rich phase    microbiological biofilm
    
ZTFLH:  TG172  
基金资助:福建省高等学校新世纪优秀人才支持计划项目 (JA10014) 资助
作者简介: null

王永霞,女,1984年生,硕士生,研究方向为特种金属材料

引用本文:

王永霞, 向红亮, 杨彩萍, 刘东. 含铜双相不锈钢在无菌/含菌环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
Yongxia WANG, Hongliang XIANG, Caiping YANG, Dong LIU. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 558-565.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.184      或      https://www.jcscp.org/CN/Y2014/V34/I6/558

图1  试样在无菌/含菌培养基中的极化曲线
Sample Icorr / Acm-2 Eb (vs SCE) / V
Solution treatment without bacteria 1.083×10-7 0.254
Aging at 540 ℃ without bacteria 2.238×10-7 0.249
Aging at 560 ℃ without bacteria 2.413×10-6 0.752
Aging at 580 ℃ without bacteria 3.500×10-6 0.046
Solution treatment without bacteria 3.667×10-7 0.837
Aging at 540 ℃ without bacteria 3.705×10-6 0.596
Aging at 560 ℃ without bacteria 2.706×10-7 1.169
Aging at 580 ℃ without bacteria 3.433×10-6 1.125
表1  含铜双相不锈钢极化曲线参数
图2  试样在无菌/含菌培养基中的Nyquist图及其拟合图
图3  Rs(QfRf)(QpRp) 等效电路
Sample RS / Ωcm2 Cf / Ssecncm-2 n1 Rf / Ωcm2 Cp / Ssecncm-2 n2 RP / Ωcm2
Solution treatment without bacteria 11.2400 3.252×10-5 0.879 9.969×106 1.760×10-4 0.860 176.93
Aging at 540 ℃ without bacteria 12.2300 3.952×10-5 0.849 5.332×106 2.087×10-4 0.844 115.60
Aging at 560 ℃ without bacteria 13.8500 1.126×10-3 0.859 2.831×104 9.371×10-3 0.849 52.38
Aging at 580 ℃ without bacteria 14.5700 5.854×10-2 0.893 2.132×103 3.331×10-2 0.906 9.45
Solution treatment with bacteria 0.8307 1.338×10-4 0.875 3.684×105 7.794×10-4 0.881 84.19
Aging at 540 ℃ with bacteria 0.7517 1.051×10-2 0.854 1.667×103 2.617×10-2 0.922 6.69
Aging at 560 ℃ with bacteria 0.6437 6.276×10-5 0.929 4.105×105 5.428×10-4 0.901 89.59
Aging at 580 ℃ with bacteria 0.7632 1.106×10-3 0.856 1.848×104 9.551×10-2 0.900 33.76
表2  试样EIS的Rs(QfRf)(QpRp)等效电路拟合结果
图4  试样经不同温度时效处理后的TEM像
图5  试样菌液浸泡后表面生物膜的OM像
Sample pH
Original
pH
After 24 h
Bacteria count, cfu/mL Original Bacteria count, cfu/mL
After 24 h
Solution treatment without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 540 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 560 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 580 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Solution treatment with bacteria 7.4~7.6 6.4~6.5 2.8×108 1.18×108
Aging at 540 ℃ with bacteria 7.4~7.6 6.4~6.6 2.8×108 0.70×108
Aging at 560 ℃ with bacteria 7.4~7.6 6.7~7.0 2.8×108 1.12×105
Aging at 580 ℃ with bacteria 7.4~7.6 6.7~6.8 2.8×108 1.29×107
表3  与试样作用前后培养基的pH值及含菌量
图6  试样菌液浸泡后表面膜层Cu2p3/2的窄幅扫描XPS谱
Sample Sputtering time / s 932.6 eV
(Cu)
933.7 eV
(CuO)
934.8 eV
(CuCO3)
935.1 eV
(Cu(OH)2)
Solution treatment with bacteria 0 52.50 16.87 30.05 0.58
20 99.54 0.46 --- ---
30 92.64 --- --- 7.36
Aging at 560 ℃ with bacteria 0 --- 37.09 62.91 ---
20 89.71 10.29 --- ---
30 100 --- --- ---
表4  Cu2p3/2结合能及其对应价态相对含量
[1] Cristóbal A B, Arenas M A, Conde A, et al. Corrosion of stainless steels covered by exopolymers[J]. Electrochim. Acta, 2006, 52(2): 546-551
[2] de Damborenea J J, Cristóbal A B, Arenas M A, et al. Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity[J]. Mater. Lett., 2007, 61(3): 821-823
[3] Little B, Wagner P. Myths related to microbiologically influenced corrosion[J]. Mater. Perform., 1997, 36(6): 40-45
[4] Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition[J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359-363
[4] (肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010,30(5): 359-363)
[5] Xiang H L, Fan J C, Liu D, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II. Microstructure and evolution of copper-rich phase[J]. Acta Metall. Sin., 2012, 48(9): 1089-1096
[5] (向红亮, 范金春, 刘东等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096)
[6] Xiang H L, Fan J C, Liu D, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel I. Corrosion resistance and antibacterial properties[J]. Acta Metall. Sin., 2012, 48(9): 1081-1088
[6] (向红亮, 范金春, 刘东等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088)
[7] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metall. Sin., 2007, 43(10): 1065-1070
[7] (南黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43(10): 1065-1070)
[8] Qin L Y, Song S Z, Li Y H, et al. Microbial-corrosion resistance of the Cu-containing ferrite stainless steels after antibacterial treatment[J]. Acta Phys.-Chim. Sin., 2008, 24(5): 895-900
[8] (秦丽雁, 宋诗哲, 李亚红等. 抗菌处理含铜铁素体不锈钢的耐微生物腐蚀性能[J]. 物理化学学报, 2008, 24(5): 895-900)
[9] Xu C M, Zhang Y H, Cheng G X, et al. Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling water system for oil pefinery[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 48-53
[9] (胥聪敏, 张耀亨, 程光旭等. 炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 48-53)
[10] Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corros. Sci., 2005, 47(5): 1097-1117
[11] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corros. Sci., 2008, 50(3): 823-834
[12] Ujiroa T, Satoha S, Staehleb R W, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media[J]. Corros. Sci., 2001, 43(11): 2185-2200
[1] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[2] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[3] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[4] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[5] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[6] 刘彤, 张艳飞, 陈旭, 王丹, 陈宇, 王冠夫. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[7] 华小珍, 黄晋华, 聂轮, 周贤良, 彭新元. 时效温度对15-5PH不锈钢组织及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 131-137.
[8] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[9] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[10] 赵义,王福. 热处理工艺对17-4PH钢耐海水腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(6): 473-477.
[11] 段东霞,陈西广,蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[12] 陈娟,类延华,高冠慧,孔茉莉,尹衍升. 硫酸盐还原菌生物膜下铜镍锡合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
[13] 刘宏芳 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98.
[14] 杜一立 李进 葛小鹏 苑维双. 用原子力显微镜研究铜合金微生物的腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(6期): 321-324.
[15] 李进; 许兆义; 杜一立; 苑维双; 牟伟腾 . 硫酸盐还原菌生物膜对HSn70-1AB铜合金电极界面的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .