|
|
Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 |
罗睿, 吴军, 柳鑫龙, 周学杰, 郑鹏华, 张三平( ) |
武汉材料保护研究所 技术研发中心 武汉 430030 |
|
Evolution of Rust Layers Formed on Q235 and 09CuPCrNi-A Steels during Initial Stage of Field Exposure in Two Sites of Different Environment |
LUO Rui, WU Jun, LIU Xinlong, ZHOU Xuejie, ZHENG Penghua, ZHANG Sanping( ) |
Technology Research and Development Centre, Wuhan Research Institute of Material Protection,Wuhan 430030, China |
引用本文:
罗睿, 吴军, 柳鑫龙, 周学杰, 郑鹏华, 张三平. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 566-573.
Rui LUO,
Jun WU,
Xinlong LIU,
Xuejie ZHOU,
Penghua ZHENG,
Sanping ZHANG.
Evolution of Rust Layers Formed on Q235 and 09CuPCrNi-A Steels during Initial Stage of Field Exposure in Two Sites of Different Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 566-573.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2013.201
或
https://www.jcscp.org/CN/Y2014/V34/I6/566
|
[1] |
Feliu S, Morcillo M, Feliu Jr S, et al. The prediction of atmospheric corrosion from meteorological and pollution parameters: II. Long-term forecasts[J]. Corros. Sci., 1993, 34: 415-422
|
[2] |
Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997-1006
|
[3] |
Hao L, Zhang S X, Dong J H, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere[J]. Corros. Sci., 2012, 59: 270-276
|
[4] |
Hao L, Zhang S C, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere[J]. Corros. Sci., 2012, 58: 175-180
|
[5] |
Garca K E, Barrero C A, Morales A L. Lost iron and iron converted into rust in steels submitted to dry-wet corrosion process[J]. Corros. Sci., 2008, 50: 763-772
|
[6] |
Hoerle S, Mazaudier F, Dillmann P. Advances in understanding atmospheric corrosion of iron: II. Mechanistic modelling of wet-dry cycles[J]. Corros. Sci., 2004, 46: 1431-1465
|
[7] |
Dillmann P, Mazaudier F, Hoerle S. Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46: 1401-1429
|
[8] |
Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge[J]. Corros. Sci., 2007, 49: 1131-1142
|
[9] |
Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros. Sci., 2006, 48: 2799-2812
|
[10] |
Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective rust on low alloy steel[J]. Corros. Sci., 1971, 14: 279-289
|
[11] |
Guo J, Yang S W, Shang C J. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment[J]. Corros. Sci., 2008, 51: 242-251
|
[12] |
Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671-2688
|
[13] |
Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere[J]. Corros. Sci., 2008, 50: 365-371
|
[14] |
Evans U R, Taylor C A J. Mechanism of atmospheric rusting[J]. Corros. Sci., 1972, 12: 227-246
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|