Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 566-573    DOI: 10.11902/1005.4537.2013.201
  本期目录 | 过刊浏览 |
Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究
罗睿, 吴军, 柳鑫龙, 周学杰, 郑鹏华, 张三平()
武汉材料保护研究所 技术研发中心 武汉 430030
Evolution of Rust Layers Formed on Q235 and 09CuPCrNi-A Steels during Initial Stage of Field Exposure in Two Sites of Different Environment
LUO Rui, WU Jun, LIU Xinlong, ZHOU Xuejie, ZHENG Penghua, ZHANG Sanping()
Technology Research and Development Centre, Wuhan Research Institute of Material Protection,Wuhan 430030, China
全文: PDF(7726 KB)   HTML
摘要: 

通过SEM、电化学方法以及XRD半定量分析方法,对在城市大气 (武汉站) 和工业大气 (石化站) 中曝晒早期的Q235碳钢和耐候钢锈层初期演化机制进行研究。与Q235碳钢相比,耐候钢在条件恶劣石化环境中更快体现耐候性,而在武汉站暴晒初期耐候钢腐蚀速率较Q235碳钢快。在含S高的石化环境,对于α-FeOOH形成有一定催化作用。另外发现锈层初期的氧化还原反应分为两个阶段。第一个阶段锈层还原产物的氧化较快,而第二个阶段,还原产物Fe3O4积累,氧化过程受阻,并且锈层整体电化学活性有所升高。

关键词 Tafel极化曲线锈层演化锈层氧化还原    
Abstract

Field exposure for carbon steel Q235 and weathering steel 09CuPCrNi-A was carried out in a site of typical urban atmosphere and a site of typical petrochemical environment respectively at Wuhan metropolis in the central China. Whilst the evolution of the formed rust layers on the steels in the initial stage of field exposure was characterized by SEM, electrochemical method and XRD. We found that the evolution of the early rust layers could be differentiated into two stages. The redox reaction was faster in the first stage. In the second stage, the reduzate Fe3O4 was accumulated and the oxidation process of Fe3O4 was suppressed with the growing of rust layers, thereby the electrochemical activity of the rust layers was enhanced.

Key wordselectrochemical polarization curve    evolution of rust layer    redox of rust layer
    
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目 (51131007) 资助
作者简介: null

罗睿,男,1989年生,硕士,研究方向为腐蚀电化学

引用本文:

罗睿, 吴军, 柳鑫龙, 周学杰, 郑鹏华, 张三平. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 566-573.
Rui LUO, Jun WU, Xinlong LIU, Xuejie ZHOU, Penghua ZHENG, Sanping ZHANG. Evolution of Rust Layers Formed on Q235 and 09CuPCrNi-A Steels during Initial Stage of Field Exposure in Two Sites of Different Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 566-573.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.201      或      https://www.jcscp.org/CN/Y2014/V34/I6/566

Steel C Si Mn S P Cu Ni Cr Fe
Q235 0.16 0.20 0.61 0.023 0.019 --- --- --- Bal.
09CuPCrNi-A 0.01 0.36 0.43 0.007 0.09 0.3 0.15 0.5 Bal.
表1  实验用钢的成分
Exposure site NO2 H2S SO3 NH3 Sea-salt particle
Wuhan 0.1531 0.0730 0.3452 0.0367 0.0090
Shihua 0.5394 0.1726 0.3627 0.0269 0.0466
表2  两站点近3 a污染因子平均浓度
图1  Q235碳钢和耐候钢在城市与工业大气中曝晒15, 30和180 d的SEM像
图2  Q235碳钢和耐候钢在城市和工业大气中曝晒15, 90和180 d的截面形貌
图3  Q235碳钢和耐候钢在武汉站和石化站曝晒不同时间的腐蚀速率
图4  Q235钢裸材在3.5%NaCl溶液中的Tafel曲线
图5  Q235碳钢在武汉和石化站曝晒不同时间的Tafel曲线
图6  耐候钢在武汉和石化站曝晒不同时间的Tafel曲线
图7  带锈试样及Q235碳钢裸材阴极极化曲线斜率随曝晒时间的变化
图8  带锈试样阳极极化曲线斜率随曝晒时间的变化
图9  Q235碳钢在武汉和石化站曝晒不同时间腐蚀产物的XRD谱
图10  耐候钢在武汉和石化站曝晒不同时间腐蚀产物的XRD谱
图11  Q235碳钢和耐候钢在曝晒不同时间后锈层中α-FeOOH与γ-FeOOH的比例变化
[1] Feliu S, Morcillo M, Feliu Jr S, et al. The prediction of atmospheric corrosion from meteorological and pollution parameters: II. Long-term forecasts[J]. Corros. Sci., 1993, 34: 415-422
[2] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997-1006
[3] Hao L, Zhang S X, Dong J H, et al. Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere[J]. Corros. Sci., 2012, 59: 270-276
[4] Hao L, Zhang S C, Dong J H, et al. Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere[J]. Corros. Sci., 2012, 58: 175-180
[5] Garca K E, Barrero C A, Morales A L. Lost iron and iron converted into rust in steels submitted to dry-wet corrosion process[J]. Corros. Sci., 2008, 50: 763-772
[6] Hoerle S, Mazaudier F, Dillmann P. Advances in understanding atmospheric corrosion of iron: II. Mechanistic modelling of wet-dry cycles[J]. Corros. Sci., 2004, 46: 1431-1465
[7] Dillmann P, Mazaudier F, Hoerle S. Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46: 1401-1429
[8] Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge[J]. Corros. Sci., 2007, 49: 1131-1142
[9] Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros. Sci., 2006, 48: 2799-2812
[10] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective rust on low alloy steel[J]. Corros. Sci., 1971, 14: 279-289
[11] Guo J, Yang S W, Shang C J. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment[J]. Corros. Sci., 2008, 51: 242-251
[12] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671-2688
[13] Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere[J]. Corros. Sci., 2008, 50: 365-371
[14] Evans U R, Taylor C A J. Mechanism of atmospheric rusting[J]. Corros. Sci., 1972, 12: 227-246
[1] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.