Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 426-432    DOI: 10.11902/1005.4537.2014.015
  本期目录 | 过刊浏览 |
输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为
刘雨薇1, 王振尧1(), 王军2, 胡波涛2
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 湖南电力公司科学研究院 长沙 410007
Corrosion Behavior of Hot-dip Galvanized Steel for Power Transmission Tower in Simulated Acid Rain Atmospheric Environment
LIU Yuwei1, WANG Zhenyao1(), WANG Jun2, HU Botao2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
全文: PDF(3370 KB)   HTML
摘要: 

通过循环盐雾腐蚀实验模拟镀锌钢在酸雨大气环境中的腐蚀过程。采用腐蚀质量损失测试、扫描电镜 (SEM)、能谱仪 (EDS) 和电化学技术分别对腐蚀48,84,132,180和228 h的镀锌钢试样进行测试分析,得到腐蚀动力学规律、腐蚀产物成分、锈层截面形貌以及表面锈层的电化学特性。研究了锈层对镀锌钢在酸雨条件下大气腐蚀的影响。动力学分析表明,腐蚀过程中镀锌钢的表面形成了具有较好保护性的锈层;电化学测试结果表明,锈层的保护性呈现随腐蚀时间的延长先增强后减弱的变化过程。

关键词 镀锌钢模拟酸雨电化学技术大气腐蚀    
Abstract

The evolution of corrosion process of hot-dip galvanized steel in a simulated acid rain atmospheric environment as a function of time was investigated by corrosion mass loss test, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical techniques.<br>Consequently, corrosion kinetics, the surface and cross-sectional morphology and composition as well as electrochemical characters of corrosion products were acquired. The influence of the rust layers on the atmospheric corrosion of hot-dip galvanized steel was studied. According to the corrosion kinetics the rust layers can well protect the hot-dip galvanized steel from corrosion. The results of electrochemical measurement further illustrate that the protective effect of the rust layers is firstly enhanced, and then weakened as the corrosion time increases.

Key wordshot-dip galvanized steel    simulated acid rain    electrochemical technique    atmospheric corrosion
    
ZTFLH:  TG172.3  
基金资助:国家电网科技项目(KG12K16004 和5211DS110493)和沈阳市科技计划项目(F11-264-1-61)资助

引用本文:

刘雨薇, 王振尧, 王军, 胡波涛. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 426-432.
Yuwei LIU, Zhenyao WANG, Jun WANG, Botao HU. Corrosion Behavior of Hot-dip Galvanized Steel for Power Transmission Tower in Simulated Acid Rain Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 426-432.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.015      或      https://www.jcscp.org/CN/Y2014/V34/I5/426

图1  镀锌钢的质量损失随腐蚀时间的变化
图2  镀锌钢腐蚀不同时间的SEM像及腐蚀产物的EDS结果
图3  镀锌钢腐蚀不同时间后截面的形貌图
图4  未腐蚀和带锈的镀锌钢在不同实验周期的极化曲线
图5  镀锌钢腐蚀不同时间后的电化学阻抗谱
图6  等效电路
Corrosion
time / h
Rs / Ωcm-2 Q1 / Fcm-2 n1 Rct / Ωcm-2 Q2 / Fcm-2 n2 Rf / Ωcm-2
48 132.6 2.676×10-4 0.1970 1.501×104 3.012×10-5 0.6835 4636
84 109.6 2.103×10-4 0.2505 4.388×104 1.285×10-4 0.8595 759.8
132 145.6 2.070×10-4 0.4830 5.496×104 4.837×10-5 0.4717 1235
180 240.0 6.868×10-5 0.4541 4.591×104 1.002×10-5 0.7876 1619
228 167.1 6.364×10-5 0.5617 2.741×103 3.025×10-5 0.3221 429.8
表1  拟合后镀锌钢的电化学阻抗谱参数
图7  电化学阻抗谱参数Rct和Q1随腐蚀时间的变化
[1] Bhatti N, Streets D G, Foell W K. Acid rain in asia[J]. J. Environ. Manage., 1992, 16(4): 541-562
[2] EI-Mahdy G A. Advanced laboratory study on the atmospheric corrosion of zinc under thin electrolyte layers[J]. Corrosion, 2003, 59(6): 505-510
[3] Cole I S, Ganther W D, Furman S A, et al. Pitting of zinc: Observations on atmospheric corrosion in tropical countries[J]. Corros. Sci.
2010, 52(3): 848-858
[4] Xu X H, Hao H W. Analysis of the distribution and causes of acid rain in southern china[J]. Sichuan Environ., 2011, 30(4): 135-139
[4] (许新辉, 郜洪文. 中国南方酸雨的分布特征及其成因分析[J]. 四川环境, 2011, 30(4): 135-139)
[5] Zhang X Y, Han E-H, Li H X. Estimation of the corrosion losses by the acidic rain in China[J]. J. Chin. Soc. Corros. Prot., 2002, 22(5): 316-319
[5] (张学元, 韩恩厚, 李洪锡. 中国的酸雨对材料腐蚀的经济损失估算[J]. 中国腐蚀与防护学报, 2002, 22(5): 316-319)
[6] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under fine size aerosols and droplets using inkjet printer deposition and optical profilometry quantification[J]. Corros. Sci., 2011, 53(11):1604-1615
[7] Thomas S, Birbilis N, Venkatraman M S, et al. Corrosion of zinc as a function of pH[J]. Corrosion, 2012, 68(1): 015009-1-9
[8] Yuan X J, Zhang J X, Zhang S M, et al. Corrosion behavior of galvanized steel for power transmission tower with breakage of zinc coating in polluted environment[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 395-399
[8] (原徐杰, 张俊喜, 张世明等. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(5):395-399)
[9] Song Z, Guo J K, Guo J L. Analysis and evaluation of environment influence on network material corrosion[J]. Shanxi Electric. Power., 2008, 149(5): 7-9
[9] (宋卓, 郭军科, 郭锦龙. 环境对电网材料的腐蚀影响分析及评价[J]. 山西电力, 2008, 149(5): 7-9)
[10] Me Z L, Cheng Z Y. Corrosion and prevention of zinc deposit of transmission towers[J]. Electric. Power. Constr., 2004, 25(1): 22-23
[10] (默增禄, 程志云. 输电线路杆塔的腐蚀与防治对策[J]. 电力建设, 2004, 25(1): 22-23)
[11] Quintana P, Veleva L, Cauich W, et al. Study of the composition and morphology of initial stage of corrosion products formed on Zn plates exposed to the atmosphere of southeast mexico[J]. Appl. Surf. Sci., 1996, 99: 325-334
[12] Wang Z Y, Yu G C, Han W. Atmospheric corrosion performance of zinc at several selected test sits in China[J]. Corros. Sci. Prot. Technol., 2003, 15(4): 191-195
[12] (王振尧, 于国才, 韩薇. 我国若干典型大气环境中的锌腐蚀[J].腐蚀科学与防护技术, 2003, 15(4): 191-195)
[13] Odnevall I. Atmospheric corrosion of field exposed zinc-a multianalytical characterization of corrosion products from initial films to fully developed layers[D]. Sweden: Royal Institute of Technology, 1994
[14] Almeida E. Atmospheric corrosion of zinc. Part I: Rural and urban atmospheres[J]. Br. Corros. J., 2000, 35(4): 284-288
[15] Almeida E. Atmospheric corrosion of zinc. Part II: Marine atmospheres[J]. Br. Corros. J., 2000, 35(4): 289-296
[16] Odnevall I, Leygraf C. Formation of Zn4SO4(OH)64H2O in a rural atmosphere[J]. Corros. Sci., 1994, 36(6): 1077-1091
[17] Odnevall I, Leygraf C. Formation of NaZn2Cl(OH)6SO46H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34(7): 1213-1229
[18] Shu D X, Yang X R, Luo Y. Study of Zn corrosion in tropic marine atmosphere[J]. Equip. Environ. Eng., 2007, 4(3): 45-48
[18] (舒德学, 杨晓然, 罗勇. 纯锌在热带海洋环境下的大气腐蚀行为及规律[J]. 装备环境工程, 2007, 4(3): 45-48)
[19] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604-1615
[20] Yan C W, Shi Z M, Lin H C, et al. Laboratory investigation of the initially corroded zinc surfaces in air containing SO2[J]. Corros. Sci. Prot. Technol., 2000, 12(3): 151-153
[20] (严川伟. 史志明. 林海潮等. Zn在SO2环境中大气腐蚀初期表面特性研究[J]. 腐蚀科学与防护技术, 2000, 12(3): 151-153)
[21] Wang S M. Progress in atmospheric exposure and laboratory-accelerated corrosion tests and their correlation of zinc and zinc coatings[J]. Total. Corros. Control., 2004, 18(4): 10-13
[21] (王绍明. 锌及锌覆盖层户外大气暴露与实验室加速腐蚀试验及其相关性的研究进展[J]. 全面腐蚀控制, 2004, 18(4): 10-13)
[22] Wang Z Y, Yu G C, Zheng Y P, et al. Investigation on interrelation of accelerated corrosion testing and atmospheric exposure of zinc[J]. J. Chin. Soc. Corros. Prot., 2001, 19(4): 239-244
[22] (王振尧, 于国才, 郑逸苹等. 锌的加速腐蚀与大气暴露腐蚀的相关性研究[J]. 中国腐蚀与防护学报, 2001, 19(4): 239-244)
[23] Wang S M, Xiao Y D, Zhang S P. SO2/Salt-spray synergistic accelerate test simulating atmospheric exposure corrosion on behavior of zinc[J]. Corros. Sci. Prot. Technol., 2005, 26(1): 13-17
[23] (王绍明, 萧以德, 张三平. SO2/盐雾复合循环加速腐蚀试验模拟锌在户外大气暴露腐蚀行为[J]. 腐蚀科学与防护技术, 2005, 26(1): 13-17)
[24] An B G, Zhang X Y, Han E-H, et al. Corrosion of zinc in simulated acid rain solution and under thin electrolyte layer formation by simulated acid rain solution.[J]. Acta. Metall. Sin., 2004, 40: 202-206
[24] (安百刚, 张学元, 韩恩厚等. Zn在模拟酸雨溶液中及其液膜下的腐蚀[J]. 金属学报, 2004, 40: 202-206)
[25] Shin'ichi M, Masayasu S, Kazuharu S, et al. Zinc corrosion in simulated acid rain[J]. Electrochim. Acta, 1999, 44: 4307-4312
[26] Zin I M, Howard R L, Badger S J, et al. The mode of action of chromate inhibitor in epoxy primer on galvanized steel[J]. Prog. Org. Coat., 1998, 33: 203-210
[27] Li X M, Liu Q, Kong L F, et al. Corrosion behavior of galvanized steel under stress in simulated acid rain solution[J]. Corros. Sci. Prot. Technol., 2008, 20(1): 44-46
[27] (黎学明, 刘强, 孔令峰等. 模拟酸雨溶液中应力对镀锌钢绞线腐蚀行为影响[J]. 腐蚀科学与防护技术, 2008, 20(1): 44-46
[28] GB/T 16545—1996. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimensB/T 16545—1996. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]
[28] GB/T 16545—1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除B/T 16545—1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除[S]
[29] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behavior of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51(4): 719-727
[30] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48(11): 3584-3608
[31] Syed S. Influence of the environment on atmospheric corrosion of aluminium[J]. Corros. Eng. Sci. Technol., 2010, 45(4): 282-287
[32] Azmat N S, Ralston K D, Muddle B C. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53: 1604-1615
[33] Biestek H. Atmospheric Corrosion Testing of Electrodeposited Zinc and Cadmium Coatings, in Atmospheric Corrosion [M]. New York: John Wiley & Sons, 1982
[34] Op't hoog C, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route[J]. Adv. Eng. Mater., 2008, 6: 579-582
[35] Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56-63
[36] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008
[36] (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[37] Svensson J E, Johansson L G. A laboratory study of the initial stages of the atmospheric corrosion of zinc oin the presence of NaCl,inflrence of SO2 and NO2[J]. Corros. Sci., 1993, 34(5): 721-738
[1] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[2] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[3] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[4] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[5] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[6] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[7] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[8] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[9] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[10] 王帅星, 杜楠, 刘道新, 肖金华, 邓丹萍. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[13] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[14] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[15] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.