Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 417-422    
  研究报告 本期目录 | 过刊浏览 |
海水短期浸泡对Q235钢抗裂特性的影响
王利民,王东旭,冯英,韩明岚,韩道平
青岛理工大学理学院 青岛 266033
INFLUENCE OF SHORT-TERM IMMERSION IN SEA WATER ON FRACTURE CHARACTERISTIC OF Q235 STEEL
WANG Limin, WANG Dongxu, FENG Ying, HAN Minglan, HAN Daoping
School of Science, Qingdao Technological University, Qingdao 266033
全文: PDF(803 KB)  
摘要: 

采用三点弯曲加载实验研究海水短期浸泡与载荷联合作用对Q235碳钢抗断裂性能的影响。测试分析在不同情况下该材料的断裂行为和海水浸泡前后最大承载力的变化。结果表明,加载到塑性区的试件在海水中短期浸泡后,再加载的位移载荷曲线的塑性阶段明显变短,断裂韧度降低并且试件变为脆性断裂。

关键词 海水早期腐蚀Q235钢电测试验断裂    
Abstract

In order to investigate the fracture properties of low carbon steel after seawater immersion and reloading, Q235 steel were made into a series of rectangle cross-section beams with prefabricated crack, and the specimens were divided a few group according to the history of its loading or reloading before and after soaking in room temperature seawater. The fracture behavior of specimen was analyzed in different test conditions, and their bearing capacity was compared with each other for loading before and after soaking. The length of plastic zone of specimen which was soaked in seawater for short-term after loaded into plastic zone became shorter and the material was more brittle.

Key wordsseawater    initial stage corrosion    Q235 steel    electronical test    fracture
收稿日期: 2011-10-19     
ZTFLH:  TG172.5  
基金资助:

国家自然科学基金(10272068)和山东省自然科学基金(Y2006A29)资助

通讯作者: 王利民     E-mail: wanglimin@qtech.edu.cn
Corresponding author: WANG Limin     E-mail: wanglimin@qtech.edu.cn
作者简介: 王利民,男,1962年生,博士,教授,研究方向为工程材料的失效分析

引用本文:

王利民,王东旭,冯英,韩明岚,韩道平. 海水短期浸泡对Q235钢抗裂特性的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 417-422.
WANG Limin, WANG Dongxu, FENG Ying, HAN Minglan, HAN Daoping. INFLUENCE OF SHORT-TERM IMMERSION IN SEA WATER ON FRACTURE CHARACTERISTIC OF Q235 STEEL. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 417-422.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/417

[1] Fragiel A, Serna S, Perez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Intern.J. Hydrogen Energy, 2005, 30: 1303-1309

[2] Jia Y Z, Wang J Q, Han E H, et al. Stress corrosion cracking behavior of X100 pipeline steel in NS4 solution under constant loading test [J]. J. Chin. Soc. Corros. Prot., 2011, 31(3):184-189

    (郏义征, 王俭秋, 韩恩厚等.X100管线钢在恒载荷作用下的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2011,31(3): 184-189)

[3] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater [J]. Corros. Sci., 2005, 47(7): 1678-1693

[4] Huang G Q. Corrosion behavior of carbon steels immersed in sea areas of China [J]. Corros. Sci. Prot. Technol., 2001, 13(2):81-88

    (黄桂桥. 碳钢在我国不同海域的海水腐蚀行为[J].腐蚀科学与防护技术,2001, 13(2): 81-88)

[5] Zheng Y Y, Wang J, Zou Y. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot.Technol., 2011, 23(1): 93-98

    (郑莹莹, 王佳, 邹妍. 海洋环境中锈层下碳钢腐蚀行为的研究进展[J].腐蚀科学与防护技术, 2011, 23(1): 93-98)

[6] Tang X, Wang J. Characteristics of micro area distribution of electrochemical parameters on Q235 steel under NaCl electrolyte droplet [J]. Corros. Sci. Prot. Technol., 2010, 22(4): 299-302

    (唐晓,王佳. Q235钢/NaCl液滴界面微区电化学特征参数分布特征[J]. 腐蚀科学与防护技术, 2010, 22(4): 299-302)

[7] Jiang L, Cao G, Mao X H, et al. Effect of Microbes on early corrosion behavior of Q235 steel in fresh water [J]. J. Chin. Soc. Corros. Prot., 2009, 29(3): 177-181

    (江莉, 曹钢, 毛旭辉等. 淡水微生物对Q235钢早期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 177-181)

[8] Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Intern. J.Hydrogen Energy, 2001, 26(5): 515-520

[9] Tang Z L, Song X, Zhang Y P. Control factors of time of wetness and IRP corrosion rate for Q235 steel under pure water thin film [J]. J.Chin. Soc. Corros. Prot., 2009, 29(3): 161-166

    (唐子龙, 宋鑫, 张义萍.纯水薄液膜下Q235钢潮湿时间的影响因素和腐蚀速度的磁阻研究[J].中国腐蚀与防护学报, 2009, 29(3): 161-166)

[10] Liu H Y, Liang X F, Shao Y W, et al.Effect of hydrostatic pressure of 3.5% NaCl solution on the corrosion behavior of epoxy coating [J].J. Chin. Soc. Corros. Prot., 2010, 30(5): 374-378

     (刘浩宇, 梁小峰, 邵亚薇等. 静水压力下Q235钢环氧涂层在 3.5% NaCl 溶液中的失效过程[J]. 中国腐蚀与防护学报, 2010, 30(5): 374-378)

[11] Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution[J]. Corros. Prot., 2007, 28(1): 17-19

     (陈惠玲, 李晓娟, 魏雨. 碳钢在含氯离子环境中腐蚀机理的研究[J].腐蚀与防护, 2007, 28(1): 17-19)

[12] Cai M H, Ding H,Zhang J S, et al. Deformation and fracture characteristics of ferrite/bainite dual-phase steels [J]. Chin. J. Mater. Res., 2009, 23(1): 83-88

     (蔡明辉, 丁桦, 张建苏等. 铁素体/贝氏体双相钢的变形与断裂特性[J]. 材料研究学报, 2009, 23(1): 83-88)

[13] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials [M]. New York: John Wiley & Sons Inc, 1996

[14] Wang L M, Sun M Y, He G Z, et al. Electronical measurement of fracture process of cast iron incision specimen and calculation of the structure bearing capacity [J]. Acta Metall.Sin., 2008, 44(7): 853-858

     (王利民, 孙明远, 贺光宗等.铸铁缺口梁断裂过程测试和承载力[J]. 金属学报, 2008, 44(7): 853-858)

[15] Wang L M, Xu S L, Zhao X Q. Analysis on cohesive crack opening displacement considering the strain softening effect [J].Sci. Chin. Ser. G Phys., Mech. Astron., 2006, 49(1): 88-101

[16] Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook (3rd Ed.)[M]. New York: American Society of Mechanical Engineers, 2000

[17] Neman Jr J C, James M A, Zerbst U. A review of the CTOA/CTOD fracture criterion [J]. Eng. Fract. Mech., 2003, 70:371-385

[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[6] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[10] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[14] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[15] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.