Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 471-474    
  研究报告 本期目录 | 过刊浏览 |
电化学噪声技术在铝合金大气腐蚀检测中的应用
韩磊1;宋诗哲1;2;张正1
1. 天津大学材料科学与工程学院 天津 300072
2. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 116023
APPLYING ELECTROCHEMICAL NOISE TECHNIQUE TO DETECT THE ATMOSPHERIC CORROSION OF ALUMINUM ALLOY
HAN Lei1; SONG Shizhe1;2; ZHANG Zheng1
1. School of Materials Science and Engineering; Tianjin University; Tianjin 300072
2. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
全文: PDF(810 KB)  
摘要: 

基于电化学噪声(EN)技术建立了适合现场应用的铝合金大气腐蚀测量系统。研制了铝合金大气腐蚀传感器,构建了零阻电流(ZRA)模式的EN测量系统和软件。利用该系统在实验室模拟和户外大气环境下进行了EN测试,研究结果表明,通过电位和电流噪声信号及噪声电阻变化可以对铝合金大气腐蚀过程进行有效检测。

关键词 电化学噪声铝合金大气腐蚀噪声电阻    
Abstract

An in-field measurement system for detecting the atmospheric corrosion of aluminum alloy was built based on electrochemical noise technology. A special probe, the apparatus and software were developed for performing electrochemical noise measurement with zero resistance ammetry (ZRA) mode. Experiments were carried out in the air condition in laboratory and then in natural atmosphere outdoors. The results showed that the atmospheric corroding process could be effectively detected or monitored by analysis of the electrochemical potential and current noise and the changing of noise resistance.

Key wordselectrochemical noise    aluminum alloy    atmospheric corrosion    noise resistance
收稿日期: 2008-04-28     
ZTFLH: 

TG174.3

 
基金资助:

国家自然科学基金重大项目(50499335)和国家重点基础研究发展规划项目(2006CB605004)资助

通讯作者: 宋诗哲      E-mail: szsong@tju.edu.cn
Corresponding author: SONG Shizhe     E-mail: szsong@tju.edu.cn
作者简介: 韩磊,男,1980年生,博士,工程师,研究方向为腐蚀电化学及石化装置腐蚀与防护

引用本文:

韩磊 宋诗哲 张正. 电化学噪声技术在铝合金大气腐蚀检测中的应用[J]. 中国腐蚀与防护学报, 2009, 29(6): 471-474.
HAN Lei, SONG Shi-Zhe, ZHANG Zheng. APPLYING ELECTROCHEMICAL NOISE TECHNIQUE TO DETECT THE ATMOSPHERIC CORROSION OF ALUMINUM ALLOY. J Chin Soc Corr Pro, 2009, 29(6): 471-474.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/471

[1] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I Verification of the experimental technique [J]. Corros. Sci., 1990, 30(6-7): 681-696
[2] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II Experimental results [J]. Corros. Sci., 1990, 30(6-7): 697-714
[3] Stratmann M, Streckel, H, Kim K T, et al. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-III The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J]. Corros. Sci., 1990,30(6-7): 715-734
[4] Yee S, Oriani R A, Stratmann M. Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres [J]. J. Electrochem. Soc., 1991, 138(1): 55-61
[5] Wang Y H, Zhang T, Wang J, et al. Applications of Kelvin probe technique in the studies of atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot.,2004, 24(1): 59-64
    (王燕华,张涛,王佳等.Kelvin探头参比电极技术在大气腐蚀研究中的应用 [J]. 中国腐蚀与防护学报,2004,24(1):59-64)
[6] Mansfeld F, Kenkel J V.Electrochemical monitoring of atmospheric corrosion phenomena [J].Corros. Sci., 1976, 16(3), 111-112
[7] Mansfeld F. Monitoring of atmospheric corrosion phenomena with electrochemical sensors [J]. J.Electrochem. Soc., 1988, 135(6): 1354-1358
[8] Mansfeld F, Tsai S.Laboratory studies of atmospheric corrosion-I. Weight loss and electrochemical measurements [J]. Corros. Sci., 1980, 20(7): 853-872
[9] Mansfeld F, Jeanjaquet S L, Kendig M W, et al. A new atmospheric corrosion rate monitor-development and evaluation [J]. Atmos.Environ., 1986, 20(6): 1179-1192
[10] Cai J P, Liu M, Luo Z H, et al. Study on accelerated tests for aluminium alloy atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2005, 25(5): 262-266
     (蔡健平,刘明,罗振华等. 航空铝合金大气腐蚀加速试验研究 [J].中国腐蚀与防护学报,2005, 25(5): 262-266)
[11] Xu J L, Li M Z. Study on electrochemical monitoring of atmospheric corrosion [J]. J. Chin.Soc. Corros. Prot., 1987, 7(1): 60-65
     (徐俊丽,李牧铮. 大气腐蚀电化学检测研究 [J]. 中国腐蚀与防护学报,1987,7(1):60-65)
[12] Dawson J L, Electrochemical Noise Measurement for Corrosion Applications, Electrochemical noise measurement for corrosion applications [M]. ASTM STP 1277, American Society for Testing and Materials, 1996, 3-35
[13] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise I. theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot.,2001, 21(5): 310-320
     (张鉴清,张昭,王建明等.电化学噪声的分析与应用-I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报,2001,21(5):310-320)
[14] Zhang Z. Research on electrochemical detection for atmosphericcorrosion of aircraft aluminium alloy [D]. Tianjin: Tianjin University,2006
     (张正. 飞行器用铝合金大气腐蚀的电化学检测研究 [D]. 天津:天津大学,2006)
[15] Eden D A, Hladky K, John D G, et al. Electrochemical noise-simultaneous monitoring of potential and current noise signals from corroding electrodes [A], Corrosion 1986 [C], NACE,Houston(TX), US, 1986, paper 86274
[16] Gusmano G, Montesperelli G, Pacetti S, et al. Electrochemical noise resistance as a tool for corrosion rate prediction [J]. Corrosion, 1997, 53(11): 860-868
[17] Mansfeld F, Xiao H. Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity [J]. J. Electrochem.Soc., 1993, 140(8): 2205-2209
[18] Xiao H, Mansfeld F. Evaluation of coatings regradation with electrochemical impedance spectroscopy and electrochemical noise analysis [J]. J. Electrochem. Soc., 1994,141(9): 2332-2337
[19] Mansfeld F, Lee C C, Zhang G. Comparison of electrochemical impedance and noise data in the frequency domain [J]. Electrochim. Acta, 1997, 43(3-4): 435-438
[20] Bertocci U,Gabrielli C, Huet F, et al. Noise resistance applied to corrosion measurements I. theoretical analysis [J]. J. Electrochem. Soc.,1997, 144(1): 31-37
[21] Bertocci U, Gabrielli C, Huet F, et al.Noise resistance applied to corrosion measurements II. experimental tests [J]. J. Electrochem. Soc., 1997, 144(1): 37-43
[22] Chen J F, Bogaerts W F. The physical meaning of noise resistance [J].Corros. Sci., 1997, 37(11): 1839-1842

[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[8] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[9] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[10] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[11] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[14] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[15] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.