Please wait a minute...
中国腐蚀与防护学报  1996, Vol. 16 Issue (1): 47-52    
  研究报告 本期目录 | 过刊浏览 |
1Cr18Ni9Ti不锈钢形变诱发马氏体相变规律及其对孔蚀敏感性的影响
许淳淳;何珂;吴永 ;邵光杰
北京化工大学;香港理工大学;燕山大学
DEFORMATION-INDUCED MARTENSITE PHASE TRANSITION AND ITS EFFECT ON PITTING SUSCEPTIBILITY FOR 1Cr18Ni9Ti STAINLESS STEEL
Xu Chunchun;He Ke
全文: PDF(1903 KB)  
摘要: 通过低温(-70℃)拉伸制备不同马氏体相交量的1Cr18Ni9Ti试样,用XRD、TEM及金相观察研究形变诱发马氏体相变的规律。用电化学方法研究。α’马氏体(铁磁相)含量对1Cr18Ni9Ti钢在含Cl-溶液中孔蚀敏感性的影响。结果表明:随试样变形量加大,形变诱发马氏体中铁磁性的α’马氏体含量不断增大,而ε马氏体相的量始终较小。材料的孔蚀敏感性先随铁磁相含量的增大而增大;当铁磁相含量达到4.58%以后,孔蚀敏感性反而渐降;当铁磁相含量超过25.5%后,孔蚀敏感性又增加。
关键词 孔蚀拉伸马氏体转变铁磁相    
Abstract:Specimens of 1Cr18Ni9Ti stainless steel were prepared by low temperature elongation deformation at-70℃ to obtain various martensite contents.The phase transition process was examined by TEM,XRD and metallography.Pitting susceptibility of the steel in 1 mol/L NaCl was evaluated by electrochmical hysteresis technique and polarization resistance measurements. Both α’-and ε-martensite were observed after the elongation deformation.The content of α’-martensite increased with increasing degree of deformation,while the amount of ε-martensite was consistently low and remained unchanged.These ferromagnetic phases had significant effect on the pitting susceptibility of the steel.When their content was less than 4.58% or more than 25.5%,the pitting susceptibility increased with the increasing amount of ferromagnetic phases.In the range from 4.58% to 25.5%,however,the specimens containing more martensite were found to be less susceptible to pitting.These findings were briefly explained.
Key wordsPitting;Elongation    Martensite transformation    Ferromegnetic phase
收稿日期: 1996-02-25     
基金资助:国家自然科学基金;;金属腐蚀与防护国家重点实验室资助

引用本文:

许淳淳;何珂;吴永 ;邵光杰. 1Cr18Ni9Ti不锈钢形变诱发马氏体相变规律及其对孔蚀敏感性的影响[J]. 中国腐蚀与防护学报, 1996, 16(1): 47-52.
. DEFORMATION-INDUCED MARTENSITE PHASE TRANSITION AND ITS EFFECT ON PITTING SUSCEPTIBILITY FOR 1Cr18Ni9Ti STAINLESS STEEL. J Chin Soc Corr Pro, 1996, 16(1): 47-52.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1996/V16/I1/47

1CigadaA,etal.Corrosion,1982,22(6):5592日本不锈钢孔蚀电位测量标准《JISG0577-1981》3SeetharamanV,KrishnanR.JournalofMaterialsScience,1981,16:5234上海交通大学.金相分析,北京:国防工业出版社,19825WarnglenG.CorrosionScience,1974,14:3316HanninenHE.Int.MetalsRev,1979,p247宋诗哲·腐蚀电化学研究方法,北京:化学工业出版社,1988,p18,p114
[1] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[2] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[3] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[4] 李阳恒,左禹,唐聿明,赵旭辉. 应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[5] 石慧英,唐聿明,左禹. PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 36-40.
[6] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[7] 张胜寒,檀玉,梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究[J]. 中国腐蚀与防护学报, 2011, 31(2): 130-134.
[8] 郜华萍,吴飞,龙晋明,介星迪,张冬平. 黄磷尾气燃气锅炉的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(1): 51-55.
[9] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[10] 张丹峰;谭晓明;马力;陈跃良. 服役环境条件下飞机结构铝合金材料孔蚀规律研究[J]. 中国腐蚀与防护学报, 2010, 30(1): 93-96.
[11] 曲秀华 许淳淳 吕国诚 程海东. 低硬度循环冷却水中Cl-、SO42-及水处理剂对304不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 187-190.
[12] 张耀丰; 丁毅; 陆晓峰; 顾伯勤 . 304不锈钢在H2S介质条件下的应力腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 101-108 .
[13] 毛健鹏; 唐聿明; 左禹* . X70钢在磷酸盐缓冲溶液中的孔蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 80-84 .
[14] 曹发和; 张昭; 施彦彦; 张鉴清; 曹楚南 . 电化学噪声频谱的VisonC++实现[J]. 中国腐蚀与防护学报, 2005, 25(1): 7-10 .
[15] 任建军; 左禹 . 铝阳极氧化膜的蚀孔形貌与蚀孔生长机理研究[J]. 中国腐蚀与防护学报, 2003, 23(4): 198-201 .