Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1425-1432     CSTR: 32134.14.1005.4537.2024.332      DOI: 10.11902/1005.4537.2024.332
  研究报告 本期目录 | 过刊浏览 |
非圆弯头冲蚀磨损数值模拟
闫冲冲1,2, 谢光明1,2, 华剑1,2(), 曾云1,2, 周思柱1,2, 余泽坤1,2
1 长江大学机械工程学院 荆州 434023
2 长江大学机械结构强度与振动研究所 荆州 434023
Numerical Simulation of Erosion Wear on Non-circular Elbows
YAN Chongchong1,2, XIE Guangming1,2, HUA Jian1,2(), ZENG Yun1,2, ZHOU Sizhu1,2, YU Zekun1,2
1 School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China
2 Mechanical Structures Strength and Vibration Research Institute, Yangtze University, Jingzhou 434023, China
引用本文:

闫冲冲, 谢光明, 华剑, 曾云, 周思柱, 余泽坤. 非圆弯头冲蚀磨损数值模拟[J]. 中国腐蚀与防护学报, 2025, 45(5): 1425-1432.
Chongchong YAN, Guangming XIE, Jian HUA, Yun ZENG, Sizhu ZHOU, Zekun YU. Numerical Simulation of Erosion Wear on Non-circular Elbows[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1425-1432.

全文: PDF(9375 KB)   HTML
摘要: 

为减小普通弯头的冲蚀,提出一种非圆弯头。基于气固两相流理论,利用Fluent软件对非圆弯头流场进行分析,优化出抗冲蚀性较好的非圆弯头,并研究流速、质量浓度、颗粒直径3种因素对弯头冲蚀的影响。结果表明:长半轴(b)位于5.0~10.0、20.0~37.5时的非圆弯头具有抗冲蚀性,其中b = 30.0时抗冲蚀性最好,较普通弯头提高17.71%。非圆弯头和普通弯头的最大冲蚀速率随3种因素的增大递增,其中流速的影响最大。不论3种因素为何值,b等于30.0、22.5、35.0、32.5、27.5时的非圆弯头最大冲蚀速率始终小于普通弯头。普通弯头与b = 30.0时的非圆弯头的最大冲蚀速率差值随3种因素的增大递增。研究结果可为弯头的结构设计与改进提供新的思路。

关键词 弯头气固两相流冲蚀磨损结构优化抗冲蚀    
Abstract

Herein, a non-circular elbow is proposed, aiming to reduce the erosion of ordinary elbow. Based on the theory of gas-solid two-phase flow, the flow field of the non-circular elbow was analyzed using Fluent software, and the non-circular elbow with better erosion resistance was optimized and the effect of flow velocity, mass concentration and particle diameter on the erosion of the elbow was studied. The results show that: the non-circular elbows are resistant to erosion when their long half axis 1(b) is located in ranges of 5.0-10.0 and 20.0-37.5, while the best erosion resistance for that with b of 30.0 with an enhancement of 17.71% in contrast to the ordinary elbow. The maximum erosion rate of non-circular elbow and ordinary elbow increases with the increase of three factors, among which the flow rate has the greatest influence. Regardless of the value of the three factors, the maximum erosion rate of non-circular elbow with b equal to 30.0, 22.5, 35.0, 32.5 and 27.5 is always smaller than that of ordinary elbow. The difference between the maximum erosion rate of the ordinary elbow and the non-circular elbow with b equal to 30.0 increases with the increase of the three factors. The results of the study can provide new ideas for the structural design and improvement of the elbow.

Key wordselbow    gas-solid two-phase flow    erosive wear    structural optimization    erosion resistance
收稿日期: 2024-10-10      32134.14.1005.4537.2024.332
ZTFLH:  TH117.1  
基金资助:国家自然科学基金(52174018);国家科技重大专项(2016ZX05038-001-LH002)
通讯作者: 华剑,E-mail:huajian5410@yangtzeu.edu.cn,研究方向为机械结构强度与振动
Corresponding author: HUA Jian, E-mail: huajian5410@yangtzeu.edu.cn
作者简介: 闫冲冲,男,1998年生,硕士生
a / mmb / mmc / mm
250.050.0
252.547.5
255.045.0
257.542.5
2510.040.0
2512.537.5
2515.035.0
2517.532.5
2520.030.0
2522.527.5
2525.025.0
2527.522.5
2530.020.0
2532.517.5
2535.015.0
2537.512.5
2540.010.0
2542.57.5
2545.05.0
2547.52.5
2550.00.0
表1  非圆弯头截面中b、c的取值
图1  对应不同b值的弯头截面形状
图2  非圆弯头结构示意图
图3  网格独立性验证
图4  数值模拟对比云图
Maximum erosion rate / kg·m-2·s-1Error / %
Experimental valueSimulation value
2.92 × 10-33.09 × 10-35.82%
2.59 × 10-32.75 × 10-36.18%
表2  实验与数值模拟对比值
图5  压力、速度云图和流线图
图6  b值与最大冲蚀速率之间的关系
图7  不同b值下的冲蚀分布云图
图8  不同b值下的颗粒轨迹图
图9  不同b值下最大冲蚀速率与流速之间的关系
图10  不同b值下最大冲蚀速率与质量浓度之间的关系
图11  不同b值下最大冲蚀速率与颗粒直径之间的关系
[1] Li H Y, Liu H, Wang G Y, et al. Review on erosion-wear and protection of heat exchange surface in power station boilers [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 957
[1] 李海燕, 刘 欢, 王阁义 等. 锅炉受热面的冲蚀磨损与防护综述 [J]. 中国腐蚀与防护学报, 2023, 43: 957
doi: 10.11902/1005.4537.2022.282
[2] Zhang J, Zhang H, Chen X H, et al. Gas-solid erosion wear characteristics of elbow pipe with corrosion defects [J]. J. Press. Vessel Technol., 2021, 143: 051501
[3] Li S, Liu Y, Yao F X, et al. Analysis on erosion characteristics of liquid-solid two phase flow for key structure of new type backflow manifold [J]. Chin. Hydraul. Pneum., 2024, 48(3): 51
[3] 李 申, 刘 洋, 姚方旭 等. 新型返排管汇关键结构液固两相流冲蚀特性分析 [J]. 液压与气动, 2024, 48(3): 51
[4] Yang X Y, Guan L, Li Y, et al. Numerical simulation and experimental study on erosion-corrosion of square elbow based on orthogonal test [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979
[4] 杨湘愚, 关 蕾, 李 雨 等. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 979
doi: 10.11902/1005.4537.2021.325
[5] Dong Z L, Ruan C, Bai L Q, et al. The simulation analysis of erosion of 90° elbow [J]. Mod. Mach. Tool Autom. Manuf. Technol., 2021, (9): 157
[5] 董争亮, 阮 超, 白立强 等. 90°弯管冲蚀磨损仿真分析 [J]. 组合机床与自动化加工技术, 2021, (9): 157
doi: 10.13462/j.cnki.mmtamt.2021.09.036
[6] Zou Y M, Qiu Z G, Huang C J, et al. Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray [J]. Surf. Coat. Technol., 2022, 434: 128205
[7] Bobzin K, Brögelmann T, Kalscheuer C, et al. Post-annealing of (Ti,Al,Si)N coatings deposited by high speed physical vapor deposition (HS-PVD) [J]. Surf. Coat. Technol., 2019, 375: 752
[8] Huang Y Q, Wang M C, Zhang L, et al. Study on particle flow characteristics of asymmetric spherical elbow [J]. Comput. Simul., 2023, 40: 236
[8] 黄钰棋, 王沐晨, 张 林 等. 非对称球形弯头内颗粒流动特性研究 [J]. 计算机仿真, 2023, 40: 236
[9] Li R, Sun Z Q, Li A J, et al. Numerical analysis of the erosion characteristics of hemispherical protrusion elbow [J]. Surf. Technol., 2021, 50(9): 215
[9] 李 睿, 孙治谦, 李安俊 等. 半球形突起弯管冲蚀特性数值研究 [J]. 表面技术, 2021, 50(9): 215
[10] Xiao F. Erosion behavior of elbow in natural gas pipe based on CFD-DEM model [D]. Chengdu: Southwest Petroleum University, 2020
[10] 肖 飞. 基于CFD-DEM模型的采输气管弯头冲蚀行为研究 [D]. 成都: 西南石油大学, 2020
[11] Mo L, Wang J, Guo Z X, et al. Study on erosion mechanism of special-shaped pipe bend with elliptical section [J]. China Petrol. Mach., 2021, 49(10): 129
[11] 莫 丽, 王 玖, 郭振兴 等. 椭圆截面异型管道弯头冲蚀机理研究 [J]. 石油机械, 2021, 49(10): 129
[12] Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
[13] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircr., 1975, 12(5): 471
[14] Wang J, Li C J, Wu X. Study on gas-liquid-solid erosion wear of elbow in shale gas gathering pipeline [J]. China Petrol. Mach., 2022, 50(9): 137
[14] 王 静, 李长俊, 吴 瑕. 页岩气集输管道弯头气液固三相冲蚀磨损特性研究 [J]. 石油机械, 2022, 50(9): 137
[15] Guo Z H, Zhang J, Li H. Optimal design for anti-erosion of pneumatic conveying elbow with rib structure [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 525
[15] 郭姿含, 张 军, 李 晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计 [J]. 中国腐蚀与防护学报, 2023, 43: 525
doi: 10.11902/1005.4537.2022.231
[16] Bourgoyne Jr A T. Experimental study of erosion in diverter systems due to sand production [A]. SPE/IADC Drilling Conference and Exhibition [C]. New Orleans, Louisiana, 1989
[17] Zhou L, Zhang H, Chen W K, et al. Analysis on erosion wear effect of fracturing manifold elbow in shale gas [J]. J. Saf. Sci. Technol., 2020, 16(10): 53
[17] 周 兰, 张 红, 陈文康 等. 页岩气压裂管汇弯头的冲蚀磨损影响分析 [J]. 中国安全生产科学技术, 2020, 16(10): 53
[18] Gao K G, Yan K L, Sun S G, et al. Influence of hydraulic fracturing working conditions on the erosion behavior of movable elbows [J]. Chem. Eng. Oil Gas, 2023, 52(6): 85
[18] 高凯歌, 闫柯乐, 孙少光 等. 水力压裂工况对活动弯头冲蚀行为的影响 [J]. 石油与天然气化工, 2023, 52(6): 85
[19] Kumar Y, Kaushal D R. Pipe bend erosion CFD modeling for two-phase liquid-solid slurry [J]. Mater. Today Proc., 2023, 82: 53
[1] 肖琦琨, 马军, 郭凯, 熊新, 袁浩然. 基于DDPM-RSM的浆体管道冲蚀磨损数值模拟研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 709-719.
[2] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.