中国腐蚀与防护学报, 2024, 44(2): 505-511 DOI: 10.11902/1005.4537.2023.241

研究报告

带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究

刘国强,1, 张东方,1,2,3, 陈昊翔1, 范志宏1,2,3

1.中交四航工程研究院有限公司 水工构造物耐久性技术交通运输行业重点实验室 广州 510230

2.南方海洋科学与工程广东省实验室(珠海) 珠海 519080

3.广东港珠澳大桥材料腐蚀与工程安全国家野外科学观测研究站 珠海 519060

Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete

LIU Guoqiang,1, ZHANG Dongfang,1,2,3, CHEN Haoxiang1, FAN Zhihong1,2,3

1.Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport, CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China

2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China

3.National Observation and Research Station of Material Corrosion and Structural Safety of Hong Kong-Zhuhai-Macao Bridge in Guangdong, Zhuhai 519060, China

通讯作者: 刘国强,E-mail:liuguoqiang020@163.com,研究方向为材料腐蚀与防护、海洋钢筋混凝土结构耐久性;张东方,E-mail:zhangdf8@mail.sysu.edu.cn,研究方向为材料腐蚀与防护、海洋钢筋混凝土结构耐久性

收稿日期: 2023-08-05   修回日期: 2023-09-01  

基金资助: 国家重点研发计划.  2019YFB1600700

Corresponding authors: LIU Guoqiang, E-mail:liuguoqiang020@163.com;ZHANG Dongfang, E-mail:zhangdf8@mail.sysu.edu.cn

Received: 2023-08-05   Revised: 2023-09-01  

Fund supported: National Key R&D Program of China.  2019YFB1600700

作者简介 About authors

刘国强,男,1997年生,硕士,助理工程师

摘要

以自然暴露3个月的带轧皮HRB400钢筋为研究对象,并与未暴露钢筋进行对比,采用开路电位测试、电化学阻抗谱测试研究了生锈钢筋和正常钢筋表面性能随浸泡时间的变化特征,并采用动电位极化曲线测试、Mott-Schottky曲线测试研究了2种钢筋的可钝化性、表面耐蚀性能与半导体行为,此外通过XPS分析了2种钢筋浸泡10 d后的组成成分。结果表明,2种钢筋均能在混凝土孔隙模拟液中完成钝化,5 d内表面均达到稳定,生锈钢筋的钝化效果、耐蚀性能均比正常钢筋略差,2种钢筋钝化前后的表面成分变化主要表现为Fe(Ⅱ)氧化物的明显降低和Fe(Ⅲ)氧化物、羟基氧化物的显著升高,正常钢筋比生锈钢筋钝化效果和耐蚀性能优异的原因是钝化后具有较低的Fe(Ⅱ)氧化物含量和较高的Fe(Ⅲ)化合物含量。

关键词: 氧化皮 ; 预锈钢筋 ; 混凝土孔隙模拟液 ; 钝化行为

Abstract

A mill scale may form on the steel surface during hot rolling process, which exhibits a certain degree of anti-corrosion effect. When a large number of steel bars are used in a construction project, most of them may be naturally exposed to atmosphere for a long time, and thus the mill scale will turn into a loose and porous yellow-brown rust scale due to atmospheric corrosion. In order to understand the nature of the passivation behavior of pre-corroded steel rebars with mill scale during the concrete curing process, the electrochemical behavior of HRB400 rebars with mill scale before (bare bar) and after being atmospherically pre-corroded for 3 months (pre-corroded bar) was comparatively assessed in simulated concrete pore solution by means of open-circuit potential measurement, electrochemical impedance spectroscopy, dynamic potential polarization curve, Mott-Schottky curve and XPS. The results show that the type of rebars can be completely passivated in the simulated concrete pore solution, whilst their surface all reached stability within 5 d. But the passivation effect and corrosion resistance of pre-corroded rebars are slightly worse than those of the bare rebars. The changes in surface composition of the two kind rebars before and after passivation are mainly due to the significant decrease in Fe(II) oxides, while significant increase in Fe(III) oxides and hydroxyl oxides, and the excellent passivation effect and corrosion resistance of the bare rebars compared with the pre-corroded rebars are due to the lower Fe(II) oxide content and higher Fe(III) compound content after passivation.

Keywords: mill scale ; pre-rusted rebar ; concrete pore solution ; passivation behavior

PDF (3528KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究. 中国腐蚀与防护学报[J], 2024, 44(2): 505-511 DOI:10.11902/1005.4537.2023.241

LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong. Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(2): 505-511 DOI:10.11902/1005.4537.2023.241

钢筋混凝土应用广泛,已经成为当今社会基础设施的最基本材料之一[1]。随着海洋资源日益受到国家的重视,以钢筋混凝土为主要形式的海工基础设施建设发展迅速[2]。然而,由于恶劣的海洋环境,钢筋混凝土结构耐久性失效引发的事故屡见不鲜,造成了巨大的经济损失[3~5]。钢筋锈蚀是导致钢筋混凝土结构耐久性失效的主要因素之一[6~8],为了提高钢筋混凝土的服役寿命,许多研究致力于提高钢筋表面的耐蚀性能[9~11]。然而,钢筋表面的初始状态对其在混凝土环境中的钝化和腐蚀过程的影响尚未引起足够的重视[12~14]。事实上,在实际工程应用中,特别是在大宗钢筋的施工过程中,大量钢筋长时间暴露在空气中,导致钢筋表面蓝褐色的氧化皮转化为淡黄色的锈层。许多研究指出,生锈钢筋表面疏松的锈层会降低钢筋与混凝土的粘结强度[15~17],但对于生锈钢筋在混凝土环境中的钝化与腐蚀问题尚无定论[18~21]。研究生锈钢筋在混凝土养护期间的钝化规律,对于正确认识和处理由于自然暴露而锈蚀的钢筋及大宗钢筋施工应用指导有重要作用。

本工作通过开路电位(OCP)、电化学阻抗谱(EIS)、动电位极化曲线、Mott-Schottky曲线测试、X射线光电子能谱(XPS)等方法对自然暴露生锈钢筋及正常钢筋开展测试分析,对比研究了2种钢筋在混凝土孔隙模拟液中的自然钝化行为,分析带轧皮生锈钢筋的钝化规律,以期为钢筋的实际工程应用提供一些指导。

1 实验方法

实验样品选取HRB400普通碳素钢筋(公称直径10 mm),钢筋主要成分(质量分数,%)为:C 0.210,Si 0.440,Mn 1.140,S 0.015,P 0.021,Fe 97.754,各种合金元素折算成的C当量(Ceq)0.420。将一批钢筋在户外工业大气环境中自然暴露3个月,钢筋表面附着了淡黄色锈蚀产物,而未暴露的钢筋表面则呈现蓝褐色。生锈钢筋(自然暴露)和正常钢筋(未暴露)均用线切割机切割成30 mm长,如图1所示。用乙醇清洗除油,并用去离子水冲洗,以排除残留腐蚀性离子对实验结果的干扰。然后将钢筋一端焊接铜导线,并且用704硅橡胶对钢筋两端进行封装,确保钢筋端面无外漏,将钢筋的带肋曲面作为工作面,暴露面积为9.42 cm2。采用饱和氢氧化钙溶液(pH ≈ 12.5)作为混凝土孔隙模拟液,每隔7 d更换溶液。将2种钢筋浸泡在溶液中,并采用亚克力板隔绝空气中的CO2,模拟钢筋在混凝土养护期间的自然钝化行为。

图1

图1   生锈钢筋(左)和正常钢筋(右)宏观形貌图

Fig.1   Macroscopic morphologies of rusted rebar (left) and normal rebar (right)


电化学测试在PARSTAT 2273电化学工作站上进行,采用传统三电极体系,以饱和甘汞电极为参比电极,钛网为辅助电极,钢筋为工作电极。电化学阻抗谱测试的正弦信号频率范围为105~10-2 Hz,振幅为±10 mV,数据采用ZSimp Win软件进行合理的等效电路拟合分析。动电位极化曲线测试范围为-0.3~1.2 V(相对OCP),扫描速率为3 mV/s,测试数据用CVIEW软件拟合分析。Mott-Schottky曲线测试电压范围为-0.3~0.6 V(相对参比电极电位),扰动信号为10 mV,频率为1 kHz,扫描速率为50 mV/s,延迟时间设定为2 s。

采用Thermo Scientific K-Alpha Nexs型XPS对2种钢筋在混凝土孔隙模拟液中浸泡前后的表面成分进行表征,获取Fe的精细谱线。获得的结果用C 1s = 284.80 eV进行结合能校正,并用Avantage软件进行拟合。

2 实验结果及讨论

2.1 电化学测试结果

图2为生锈钢筋和正常钢筋在混凝土孔隙模拟液中OCP随浸泡时间的变化曲线,可以看出,随着浸泡时间的增加,2种钢筋的开路电位不断增大。在0~1 d内,生锈钢筋的OCP上升速率较快,之后缓慢增加,浸泡10 d后OCP为-153 mV。正常钢筋的OCP在0~3 d内快速上升,之后趋于平稳,浸泡10 d后为-105 mV。OCP是反映钢筋表面热力学特征的一个重要指标,钢筋的OCP越正,表明金属的腐蚀倾向越小[22]。OCP的实验结果表明,随着浸泡时间的延长,两种钢筋在混凝土孔隙模拟液中的腐蚀倾向变小,且在浸泡5 d后均达到稳定状态。

图2

图2   2种钢筋在混凝土孔隙模拟液中的OCP随时间变化图

Fig.2   OCP of 2 types of steel rebars in concrete pore simulant for different time


对2种钢筋在混凝土孔隙模拟液中的EIS进行测试,如图3所示。从Nyquist图中可以看出,随着浸泡时间的延长,2种钢筋的容抗弧半径逐渐增大;从Bode图中可以看出,2种钢筋的低频阻抗模值和相位角峰宽随浸泡时间的延长均显著增加,并且最大相位角也向低频方向移动。2种钢筋在混凝土孔隙模拟液中表现出相似的阻抗行为和变化规律,各项电化学阻抗参数均在浸泡初期(0~3 d)增长迅速,浸泡后期(5~10 d)趋于稳定。EIS可以反映钢筋表面特性和电化学反应的动力学参数,低频下的阻抗模值代表电化学体系的溶液电阻和极化阻抗,模值越大,钢筋表面耐蚀性能越好[23]。EIS的测试结果表明,浸泡在混凝土孔隙模拟液中的2种钢筋表面耐蚀性能不断增强,在浸泡10 d后,正常钢筋的耐蚀性能略高于生锈钢筋。

图3

图3   2种钢筋在混凝土孔隙模拟液中浸泡不同时间的EIS

Fig.3   Nyquist (a, d), impedance module (b, e) and phase angle (c, f) plots of rusted rebar (a-c) and normal rebar (d-f) immersed in concrete pore simulation solution for different time


从2种钢筋的EIS可以看出,低频范围内相位角呈现出不对称性,表明存在两个重叠的时间常数[24]。由于钢筋表面的非均匀性,采用常相位角元件CPE(用Q表示)替代理想电容C。基于EIS的结果与分析,考虑到钢筋表面的氧化还原反应,采用图4等效电路对数据进行拟合[25,26]。其中,Rs为溶液电阻,Rox为孔隙电阻,Qox为孔隙电容,Rct为电荷转移电阻,Qdl为双电层电容。将RoxRct的和定义为总电阻Rt,反映体系的耐蚀性能。2种钢筋的Rt值随浸泡时间的变化如图5所示,2种钢筋的Rt均随浸泡时间的延长不断增大,浸泡10 d后,生锈钢筋的Rt值为0.89 MΩ·cm2,正常钢筋的Rt值为2.58 MΩ·cm2,这表明在混凝土孔隙模拟液中浸泡10 d后,2种钢筋表面耐蚀性能均增强,正常钢筋的耐蚀性能优于生锈钢筋。

图4

图4   拟合所采用的等效电路图

Fig.4   Equivalent circuit diagram used for fitting


图5

图5   2种钢筋Rt随浸泡时间变化图

Fig.5   Variation of Rt with immersion time for 2 types of steel rebars


对2种钢筋在混凝土孔隙模拟液中浸泡10 d后的动电位极化曲线进行测试,结果如图6所示。可以看出,2种钢筋均有典型的钝化区域,说明2种钢筋在混凝土孔隙模拟液中均具有可钝化性。对曲线进行分析,结果如表1所示。结果表明,在混凝土孔隙模拟液中浸泡10 d后,生锈钢筋的自腐蚀电位Ecorr为-0.25 V,低于正常钢筋的-0.18 V,而生锈钢筋的自腐蚀电流密度Icorr为0.87 μA·cm-2,高于正常钢筋的0.43 μA·cm-2。在钢筋典型钝化区中,生锈钢筋的维钝电流密度Ip和击破电位Ep分别为1.54~2.85 μA·cm-2和0.37 V,而正常钢筋的IpEp分别为0.79~2.12 μA·cm-2和0.40 V。可见,2种钢筋钝化后的维钝电流密度都较高,这可能与混凝土模拟孔隙液碳化而导致的溶液pH值降低有关。动电位极化曲线是反映钢筋动力学信息的特征指标,对于可钝化体系来说,IpEp可以用来衡量钢筋耐蚀性能,Ep越高、Ip越小,说明钢筋耐蚀性能越好[27]。故动电位极化曲线测试结果表明,2种钢筋均能在混凝土孔隙模拟液中完成钝化,正常钢筋的钝化效果和耐蚀性能比生锈钢筋更好。

图6

图6   2种钢筋在混凝土孔隙模拟液中浸泡10 d后的动电位极化曲线图

Fig.6   Dynamic potential polarization curves of 2 types of steel rebars after 10 d of immersion in concrete pore simulation solution


表1   2种钢筋动电位极化曲线拟合结果

Table 1  Fitting results of dynamic potential polarization curves for 2 types of steel bars

RebarEcorr / VIcorr / μA·cm-2Ip / μA·cm-2Ep / V
Rusted rebar-0.250.871.54~2.850.37
Normal rebar-0.180.430.79~2.120.40

新窗口打开| 下载CSV


钢筋表面钝化膜具有半导体特性,但与本征半导体不同,钝化膜层通常表现为重掺杂、高度简并的半导体性质[28]。根据电子能带理论,当氧化物导带的电子数量大于价带中的空穴数量时,氧化物表现为n型半导体,反之为p型半导体,钝化膜的半导体特性可用Mott-Schottky关系式来描述[29]

对于n型半导体:

1C2=2εε0eND(E-Efb-KTe)

对于p型半导体

1C2=-2εε0eNA(E-Efb-KTe)

其中,C为空间电荷层电容,F/cm2ε为半导体介电常数(取值12),F/cm;ε0为真空介电常数(取值8.85 × 10-14),F/cm;e为电子电荷(取值1.6 × 10-19),C;NDNA分别为施主和受主密度,即载流子密度,cm-3E是所施加的电位,V;Efb为平带电位,V;K是Boltzmann常数,取值1.38 × 10-23 J/K;T为绝对温度,K。

根据点缺陷模型,钢筋表面钝化膜中含有各种高浓度的点缺陷,p型半导体的主要点缺陷是阳离子空位,为电子受主,表现为金属空穴传输特性;n型半导体的主要点缺陷是氧空位/阳离子间隙,为电子施主,表现为电子传输特性[30]。钢筋表面的施主或受主的浓度越小,Cl-等侵蚀性离子就越难吸附进入表面空位,阳极的反应也就越难进行,其耐腐蚀性能也就越优异[25]

图7是2种钢筋在混凝土孔隙模拟液中钝化10 d后的Mott-Schottky曲线。可以看出,2种钢筋均表现出类似的半导体行为,外加电位在-0.3~0.4 V范围时,2种钢筋表面的C-2-E关系存在明显的Mott-Schottky关系,Mott-Schottky曲线斜率为正值,显示n型半导体性质。由图6可知,2种钢筋电极在混凝土孔隙模拟液中均具有可钝化性[31],钝化电位区间处于-0.3~0.4 V内,钢筋在此电位内表面持续钝化,生成大量三价Fe化合物,电极过程表现为电子传输特性。外加电位为0.4~0.6 V时,Mott-Schottky曲线斜率为负值,钢筋表现出p型半导体行为,此时钢筋电极过程表现为二价Fe氧化物的金属空穴传输特性。对2种钢筋的Mott-Schottky曲线进拟合,得出生锈钢筋的施主浓度为1.08 × 1022 cm-3,正常钢筋的施主浓度为1.05 × 1021 cm-3。Mott-Schottky曲线测试结果表明,2种钢筋在钝化区间内的电极过程均为电子传输,生锈钢筋表面缺陷密度更多,耐蚀性能比正常钢筋更差。

图7

图7   2种钢筋在混凝土孔隙模拟液中浸泡10 d后的Mott-Schottky曲线

Fig.7   Mott-Schottky curves of rusted (a) and normal (b) rebars after 10 d of immersion in concrete pore simula-tion solution


2.2 成分表征结果

图8为生锈钢筋和正常钢筋在混凝土孔隙模拟液中钝化前后得到的Fe 2p3/2 XPS精细谱。根据图谱特征,2种钢筋表面的Fe 2p3/2精细谱线被拟合为单质Fe (709.4 eV)、二价铁氧化物FeO (710.2 eV)、三价铁氧化物Fe2O3 (710.9 eV)、三价铁羟基氧化物FeOOH (713.2 eV)。为了更加直观地了解2种钢筋在混凝土孔隙模拟液中钝化前后表面成分变化,将4种铁产物的相对含量变化绘制在图9中。可以看出,生锈钢筋在混凝土孔隙模拟液中浸泡前,表面主要成分为Fe2O3 (50.12%)、FeO (40.63%)、FeOOH (6.71%)、Fe (2.54%);而浸泡10 d后,二价铁氧化物含量显著降低为22.21%,三价铁氧化物、羟基氧化物的含量明显升高至53.43%、22.45%,单质Fe的含量为1.91%。正常钢筋在混凝土孔隙模拟液中浸泡前,表面主要成分为Fe2O3 (40.44%)、FeO (35.71%)、FeOOH (19.64%)、Fe (4.21%);而浸泡10 d后,二价铁氧化物含量显著降低为7.42%,三价铁氧化物、羟基氧化物的含量明显升高至61.81%、29.58%,单质Fe的含量为1.19%。Fe3+/Fe2+比率是一个判断钝化性能的重要指标,通常该比率越高,钢筋钝化效果越好,生锈钢筋和正常钢筋钝化后的Fe3+/Fe2+比率分别为3.5、12.3。XPS测试结果表明,2种钢筋在浸泡前后的主要成分没有改变,但是主要成分的含量发生了较大变化,主要表现在二价铁氧化物的明显降低和三价铁氧化物、羟基氧化物的显著提升。

图8

图8   生锈钢筋和正常钢筋钝化前后表面Fe 2p3/2的XPS精细谱及拟合结果

Fig.8   XPS spectra of Fe 2p3/2 and fitting curves on the surface of rusted rebar (a) and normal rebar (b) before and after passivation


图9

图9   2种钢筋钝化前后表面成分中4种铁产物的相对含量

Fig.9   Relative content of 4 iron products on the surface of 2 types of steel rebars before and after passivation


从XPS的分析结果可知,2种钢筋在混凝土孔隙模拟液中钝化前后表现为Fe(Ⅱ)氧化物和Fe(Ⅲ)化合物的此消彼长,钝化过程实际上是Fe(Ⅱ)氧化物向Fe(Ⅲ)化合物转化的过程[32]。根据Poubaix图[33],在碱性体系下,Fe(Ⅲ)化合物比Fe(Ⅱ)氧化物更为稳定,这与电化学测试结果中2种钢筋经过混凝土孔隙模拟液浸泡后耐蚀性能不断提升的结果是一致的。并且,Fe(Ⅲ)化合物的含量越高,钢筋表面越稳定,耐蚀性能越好,这也是正常钢筋比生锈钢筋钝化效果更好的主要原因。

3 结论

(1) 带轧皮预锈钢筋和带轧皮正常钢筋在混凝土孔隙模拟液中均具有可钝化性,2种钢筋在5 d内均达到稳定,浸泡10 d后,生锈钢筋和正常钢筋的总电阻Rt、维钝电流密度Ip和击破电位Ep分别为0.89 MΩ·cm2、0.79~2.12 μA·cm-2、0.40 V和2.58 MΩ·cm2、0.79~2.12 μA·cm-2、0.40 V,正常钢筋的钝化效果和耐蚀性能较生锈钢筋好。

(2) 2种钢筋钝化前后的表面成分含量变化主要表现为Fe(Ⅱ)氧化物的明显降低和Fe(Ⅲ)氧化物、羟基氧化物的显著提升,正常钢筋比生锈钢筋钝化效果和耐蚀性能优异的原因是钝化后具有较低的Fe(Ⅱ)氧化物含量和较高的Fe(Ⅲ)化合物含量。

参考文献

Jin W L, Zhao Y X. Durability of Concrete Structures[M]. 2nd ed. Beijing: Science Press, 2014: 15

[本文引用: 1]

金伟良, 赵羽习. 混凝土结构耐久性[M]. 2版. 北京: 科学出版社, 2014: 15

[本文引用: 1]

Hou B R. Marine Reinforced Concrete Corrosion and Repair Reinforcement Technology[M]. Beijing: Science Press, 2012: 1

[本文引用: 1]

侯保荣. 海洋钢筋混凝土腐蚀与修复补强技术[M]. 北京: 科学出版社, 2012: 1

[本文引用: 1]

Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017: 497

[本文引用: 1]

侯保荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017: 497

[本文引用: 1]

Ke W. Investigation Report on Corrosion in China[M]. Beijing: Chemical Industry Press, 2003: 22

柯 伟. 中国腐蚀调查报告[M]. 北京: 化学工业出版社, 2003: 22

Morris W, Vazquez M.

Corrosion of reinforced concrete exposed to marine environment

[J]. Corros. Rev., 2002, 20: 469

DOI      URL     [本文引用: 1]

Ahmad S.

Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review

[J]. Cem. Concr. Compos., 2003, 25: 459

DOI      URL     [本文引用: 1]

Angst U, Elsener B, Larsen C K, et al.

Critical chloride content in reinforced concrete-A review

[J]. Cem. Concr. Res., 2009, 39: 1122

DOI      URL    

Moser R D, Singh P M, Kahn L F, et al.

Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions

[J]. Corros. Sci., 2012, 57: 241

DOI      URL     [本文引用: 1]

Zhang X F, Chen Y Q, Hu J M.

Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection

[J]. Corros. Sci., 2020, 166: 108452

DOI      URL     [本文引用: 1]

Aslam R, Serdaroglu G, Zehra S, et al.

Corrosion inhibition of steel using different families of organic compounds: Past and present progress

[J]. J. Mol. Liq., 2022, 348: 118373

DOI      URL    

An H Z, Xu Z Y, Meng G Z, et al.

High corrosion resistance film on rebar by cerium modification

[J]. J. Mater. Sci. Technol., 2021, 64: 73

DOI      [本文引用: 1]

A cerium film was prepared on the surface of rebar by chemical conversion method to enhance its corrosion resistance. The film in the simulated concrete pore solution was measured by electrochemical method, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The effect of temperature on film formation was studied, and the optimum temperature was determined at 35 °C. The film produced by too high formation temperature has more defects, resulting in the lower corrosion resistance. The Ce film resistance increased with time evolution until 800 h, then decreased and stabilized. The Ce film layer has a double-layer film structure, the upper layer is an oxide of cerium, and the underlayer is an oxide of iron. Results revealed that after being immersed in the simulated concrete pore solution, the corrosion resistance of the Ce film was enhanced by self-densification.

González J A, Miranda J M, Otero E, et al.

Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution

[J]. Corros. Sci., 2007, 49: 436

DOI      URL     [本文引用: 1]

Bensabra H, Azzouz N.

Study of rust effect on the corrosion behavior of reinforcement steel using impedance spectroscopy

[J]. Metall. Mater. Trans., 2013, 44A: 5703

Miranda J M, González J A, Cobo A, et al.

Several questions about electrochemical rehabilitation methods for reinforced concrete structures

[J]. Corros. Sci., 2006, 48: 2172

DOI      URL     [本文引用: 1]

Yang Y Z, Nakamura H, Miura T, et al.

Effect of corrosion-induced crack and corroded rebar shape on bond behavior

[J]. Struct. Concr., 2019, 20: 2171

DOI      URL     [本文引用: 1]

Choi Y S, Yi S T, Kim M Y, et al.

Effect of corrosion method of the reinforcing bar on bond characteristics in reinforced concrete specimens

[J]. Constr. Build. Mater., 2014, 54: 180

DOI      URL    

Lee H S, Noguchi T, Tomosawa F.

Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion

[J]. Cem. Concr. Res., 2002, 32: 1313

DOI      URL     [本文引用: 1]

Al-tayyib A J, Khan M S, Allam I M, et al.

Corrosion behavior of pre-rusted rebars after placement in concrete

[J]. Cem. Concr. Res., 1990, 20: 955

DOI      URL     [本文引用: 1]

Maslehuddin M, Al-Zahrani M M, Al-Dulaijan S U, et al.

Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete

[J]. Cem. Concr. Compos., 2002, 24: 151

DOI      URL    

Novak P, Mala R, Joska L.

Influence of pre-rusting on steel corrosion in concrete

[J]. Cem. Concr. Res., 2001, 31: 589

DOI      URL    

Avila-Mendoza J, Flores J M, Castillo U C.

Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete

[J]. Corrosion, 1994, 50: 879

DOI      URL     [本文引用: 1]

Shang B H, Ma Y T, Meng M J, et al.

Characterisation of passive film on HRB400 steel rebar in curing stage of concrete

[J]. Chin. J. Mater. Res., 2019, 33: 659

DOI      [本文引用: 1]

The standard curing time of concrete is 28 days in order to guarantee the strength of the concrete. It is well known that a stable passive film can be formed on the surface of steel rebar in the alkaline pore fluid during the concrete curing stage, long before the steel rebar will be influenced by chloride ingress or concrete carbonation in the future. However, there is no consensus on the time conditions for the pre-passivation of the steel bars in the open literature. In this study, the growth process and characteristic evolution of the passive film formed on HRB400 steel rebar in a Ca(OH)2 saturated solution, which aims to simulate the medium in concrete pores during curing period, were studied by a series of electrochemical tests (open-circle potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (PDC)) and XPS. Results show that it will take 5 days to form a stable passive film on the surface of HRB400 steel rebar, and the passive film has a two-layered structure. In the initial stage of passivation, on the HRB400 steel surface a thin film mainly composed of Fe(II) products firstly formed, then on top of which, a film mainly composed of Fe(III) products would further form.

商百慧, 马元泰, 孟美江 .

混凝土养护期间HRB400钢筋钝化行为研究

[J]. 材料研究学报, 2019, 33: 659

DOI      [本文引用: 1]

为了研究HRB400钢筋在模拟养护阶段混凝土孔隙液中表面钝化膜的生长过程,采用3种电化学测试技术(开路电位、电化学阻抗谱、动电位极化曲线)研究钢筋表面钝化膜的性能随着浸泡时间的变化特征,此外通过XPS对稳定钝化膜的成分与结构进行分析。结果表明,同传统钢筋材料一样,HRB400钢筋在模拟混凝土养护条件的溶液中展现出良好的耐蚀性能,浸泡5 d后便能够生成稳定钝化膜。XPS分析发现钢筋钝化膜为双层结构,内层以二价铁离子化合物为主,外层主要由三价铁离子化合物组成。

Wang M L, Sun Y P, Chen L, et al.

Study on passive behavior of corrosion-resistant steel bars containing Cr in simulated high-alkaline concrete pore solution

[J]. Acta Metall. Sin., 2023, DOI: 10.11900/0412.1961.2023.00203

[本文引用: 1]

王慕亮, 孙玉朋, 陈 磊 .

含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为

[J]. 金属学报, 2023, DOI: 10.11900/0412.1961.2023.00203

[本文引用: 1]

Yuan X W.

Study on natural passivation and depassivaation behavior of stainless steel in simulated concrete pore solution

[D]. Hefei: University of Science and Technology of China, 2021

[本文引用: 1]

苑旭雯.

模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究

[D]. 合肥: 中国科学技术大学, 2021

[本文引用: 1]

Shi J J, Sun W.

Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete

[J]. Corros. Sci. Prot. Technol., 2011, 23: 387

[本文引用: 2]

施锦杰, 孙 伟.

等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究

[J]. 腐蚀科学与防护技术, 2011, 23: 387

[本文引用: 2]

简述了混凝土中钢筋锈蚀的电化学阻抗谱测试常用的等效电路, 对比分析了不同等效电路的优劣性. 根据混凝土中钢筋的钝化、初锈与锈蚀发展期三个阶段选取相应的等效电路进行拟合分析. 结果表明, 随着钢筋锈蚀的发展, 等效电路拟合时需要增加时间常数; 应用常相角元件CPE和Warburg扩散元件能更好地进行阻抗谱拟合.

Shi J J, Ming J, Wang D Q, et al.

Influence of atmospheric pre-rusting on corrosion behavior of low-alloy rebar in simulated concrete pore solution

[J]. J. Build. Mater., 2017, 20: 180

[本文引用: 1]

施锦杰, 明 静, 王丹芊 .

大气预锈对混凝土模拟液中低合金钢筋腐蚀行为的影响

[J]. 建筑材料学报, 2017, 20: 180

[本文引用: 1]

Cen S B, Chen H, Liu Y, et al.

Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel

[J]. Acta Metall. Sin., 2016, 52: 1441

[本文引用: 1]

岑升波, 陈 辉, 刘 艳 .

CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响

[J]. 金属学报, 2016, 52: 1441

DOI      [本文引用: 1]

采用超音速火焰喷涂在Q345基体上制备了微米WC-12Co, 纳米改性WC-12Co和CeO<sub>2</sub>改性WC-12Co涂层, 利用SEM, XRD和显微硬度计等手段观察表征了涂层的微观组织、相成分和显微硬度, 通过LSCM, SEM, 极化实验和浸泡腐蚀实验等方法研究分析了涂层在1 mol/L H<sub>2</sub>SO<sub>4</sub>溶液中的腐蚀行为和腐蚀机理. 结果表明: 纳米CeO<sub>2</sub>的加入可以显著降低涂层的孔隙率, 有效减少局部腐蚀的发生; 同时添加纳米CeO<sub>2</sub>可以使涂层电极电位发生正移, 降低腐蚀电流密度, 生成稳定的钝化膜, 降低涂层的维钝电流密度, 提高涂层的耐腐蚀性能; 纳米CeO<sub>2</sub>改性WC-12Co涂层的腐蚀机制为由孔隙诱发的局部腐蚀, 孔隙处的Co黏结相不断被腐蚀导致WC颗粒失去了支撑作用而脱落, 从而露出新的Co黏结相, 促进了涂层的腐蚀, 使孔隙不断扩大形成腐蚀坑. 而微米WC-12Co涂层和纳米改性WC-12Co涂层不仅最外层的Co黏结相被腐蚀, 而且在孔隙处也发生了严重的局部腐蚀.

Hamadou L, Kadri A, Benbrahim N.

Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy

[J]. Appl. Surf. Sci., 2005, 252: 1510

DOI      URL     [本文引用: 1]

Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes[M]. New York: Plenum Press, 1980

[本文引用: 1]

Macdonald D D.

The point defect model for the passive state

[J]. J. Electrochem. Soc., 1992, 139: 3434

DOI      [本文引用: 1]

Lu X Y, Lin W, Li Y J.

Passivation of rebar with mill scale and stains under anodic polarization

[J]. J. Build. Mater., 2015, 18: 988

[本文引用: 1]

路新瀛, 林 玮, 李源晋.

阳极极化下带热轧皮和生锈钢筋的可钝化性

[J]. 建筑材料学报, 2015, 18: 988

[本文引用: 1]

Li Y J.

Chemical stability of rebar with mill scale in simulated concrete pore solutions

[D]. Beijing: Tsinghua University, 2016

[本文引用: 1]

李源晋.

带轧皮钢筋在模拟混凝土孔溶液中的化学稳定性研究

[D]. 北京: 清华大学, 2016

[本文引用: 1]

McCafferty E. Introduction to Corrosion Science[M]. New York: Springer, 2010: 95

[本文引用: 1]

/