Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 948-958          DOI: 10.11902/1005.4537.2021.340
  研究报告 本期目录 | 过刊浏览 |
干湿比对CrNiMoV钢在120 mmol/L NH4H2PO4溶液中电化学腐蚀行为的影响
王通1,2, 孟惠民1, 郭维华2,3, 葛鹏飞1,2, 巩秀芳2,3, 倪荣2,3, 龚显龙2,3, 戴君2,3, 隆彬2,3, 李全德2,3()
1.北京科技大学新材料技术研究院 北京 100083
2.长寿命高温材料国家重点实验室 德阳 618000
3.东方汽轮机有限公司 德阳 618000
Influence of Dry-wet Ratio on Electrochemical Corrosion Behavior of CrNiMoV Steel in 120 mmol/L NH4H2PO4 Solution
WANG Tong1,2, MENG Huimin1, GUO Weihua2,3, GE Pengfei1,2, GONG Xiufang2,3, NI Rong2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3, LI Quande2,3()
1. Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2. State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3. Dongfang Turbine Co. Ltd., Deyang 618000, China
引用本文:

王通, 孟惠民, 郭维华, 葛鹏飞, 巩秀芳, 倪荣, 龚显龙, 戴君, 隆彬, 李全德. 干湿比对CrNiMoV钢在120 mmol/L NH4H2PO4溶液中电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 948-958.
Tong WANG, Huimin MENG, Weihua GUO, Pengfei GE, Xiufang GONG, Rong NI, Xianlong GONG, Jun DAI, Bin LONG, Quande LI. Influence of Dry-wet Ratio on Electrochemical Corrosion Behavior of CrNiMoV Steel in 120 mmol/L NH4H2PO4 Solution[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 948-958.

全文: PDF(15665 KB)   HTML
摘要: 

通过激光共聚焦显微镜 (CLSM)、X射线衍射仪 (XRD)、X射线光电子能谱 (XPS)、开路电位、电化学阻抗谱等研究了在外界温度为 (25±2)℃,湿度为 (55±5)%的空气中干燥,120 mmol/L NH4H2PO4溶液中浸润的干湿交替环境下干湿比的变化对2Cr-1Ni-1.2Mo-0.2V钢和2Cr-4Ni-0.4Mo-0.1V钢的电化学腐蚀行为影响。结果表明:在干湿比为0、1/3、1、3条件下实验21 d后,两种钢发生均匀腐蚀和点蚀,且随着干湿比增大,两种钢的腐蚀速率增大,点蚀程度变大,但2Cr-1Ni-1.2Mo-0.2V钢的耐蚀性优于2Cr-4Ni-0.4Mo-0.1V钢。两种钢的腐蚀产物膜主要由Fe3(PO4)2、FePO4、Fe2O3、FeOOH构成,且随着干湿比增大,FeOOH和Fe3(PO4)2含量减少,Fe2O3含量增多。随着干湿比的增大,两种钢的开路电位负移,电荷转移电阻变小,但2Cr-4Ni-0.4Mo-0.1V钢的腐蚀速率高于2Cr-1Ni-1.2Mo-0.2V钢。

关键词 CrNiMoV钢NH4H2PO4干湿交替干湿比腐蚀    
Abstract

The effect of dry-wet ratio of cyclically dry/wet testing, i.e. drying in atmosphere of (55±5)% humidity and wetting in 120 mmol/L NH4H2PO4 solution at an external temperature of (25±2) ℃, on the electrochemical corrosion behavior of 2Cr-1Ni-1.2Mo-0.2V and 2Cr-4Ni-0.4Mo-0.1V steels respectively were investigated by laser scanning confocal microscopy (CLSM), X-ray polycrystalline diffractometer (XRD), X-ray photoelectron spectroscope (XPS), open circuit potential and electrochemical impedance spectroscope. The results show that after tested for 21 d with dry/wet ratio of 0, 1/3, 1 and 3 respectively, uniform corrosion and pitting corrosion emerged for the two steels. With the increase of dry/wet ratio, the corrosion rate and the pitting degree of the two steels increased, but the corrosion resistance of 2Cr-1Ni-1.2Mo-0.2V steel was better than 2Cr-4Ni-0.4Mo-0.1V steel. The corrosion product film of the two steels composed mainly of Fe3(PO4)2, FePO4, Fe2O3, and FeOOH. However, with the increasing dry/wet ratio, the amount of Fe3(PO4)2 and FeOOH decreased, that of Fe2O3 increased in the corrosion product film. Meanwhile, the open circuit potential and charge-transfer resistance decreased, it is worth pointing out in particular that the corrosion rate of 2Cr-1Ni-1.2Mo-0.2V steel exhibited corrosion rate smaller than 2Cr-4Ni-0.4Mo-0.1V steel.

Key wordsCrNiMoV steel    NH4H2PO4    drying/wetting cycle    dry/wet ratio    corrosion
收稿日期: 2021-11-26     
ZTFLH:  TG174  
作者简介: 王通,男,1995年生,硕士生
图1  1R钢和2R钢的腐蚀速率随干湿比的变化
图2  1R钢和2R钢在不同浸泡条件实验21 d后的腐蚀产物形貌
SteelsConditionSurface roughness / μmSpecific surface area
RaRqRz
1RDry/wet=00.70.84.01.5
Dry/wet=1/31.31.77.62.0
Dry/wet=11.72.08.12.3
Dry/wet=34.35.325.95.3
2RDry/wet=00.81.04.31.6
Dry/wet=1/31.51.88.02.1
Dry/wet=12.12.511.32.5
Dry/wet=34.86.128.46.0
表1  在1R钢和2R在不同浸泡条件实验21 d后的表面粗糙度及表面积比参数
图3  1R和2R钢在不同浸泡条件实验21 d除锈后的腐蚀产物形貌
图4  1R钢和2R钢在不同浸泡条件实验21 d后的腐蚀坑三维形貌
图5  1R钢和2R钢在不同浸泡条件实验后的腐蚀坑的孔径及孔深
图6  1R钢和2R钢在不同浸泡条件实验后的腐蚀产物XRD谱图
图7  1R钢和2R钢在干湿比为1/3条件下形成的腐蚀产物膜的XPS谱图
ElementPeakSpecies / binding energy
Fe2p3/2Fe3O4/709 eV; Fe2O3/711.5 eV; FeOOH/711.8 eV;Fe3(PO4)2/710.1 eV; FePO4/712.8 eV
Cr2p3/2CrO3/578.9 eV;Cr2O3/576 eV; Cr(OH)3/577.1 eV
表2  腐蚀产物膜中主要组成相的结合能
ElementsProductPeak areas (Percentage of peak area / %)
1R2R
Fe 2p3/2Fe3O4931 (1.79)884.38 (1.81)
Fe2O310257.22 (19.7)10204.03 (20.88)
FeOOH8668.64 (16.65)7254.12 (14.85)
Fe3(PO4)216828.17 (32.33)15985.2 (32.72)
FePO415373.17 (29.53)14529.2 (29.74)
Cr 2p3/2Cr2O3400.8 (20.73)274 (14.71)
CrO3948.52 (49.05)1239.64 (18.72)
Cr (OH)3584.49 (30.22)3765.1 (66.57)
表3  腐蚀产物膜中Fe 2p3/2、Cr 2p3/2的XPS谱图拟合出的各峰面积及其面积比
图8  1R钢和2R钢在不同浸泡条件实验21 d后的开路电位
图9  1R钢和2R钢在不同浸泡条件实验21 d后的电化学阻抗谱
图10  1R钢和2R钢在不同浸泡条件实验21 d后的等效电路
SteelConditionRs / Ω·cm2QfRf / Ω·cm2QdlRct / Ω·cm2
Y0 / Ω-1·cm-2·S nnY0 / Ω-1·cm-2·S nn
1RDry/wet=080.363.19 ×10-50.31118.25.1 ×10-40.52861.9
Dry/wet=1/381.032.33 ×10-70.6293.037.08 ×10-40.57585.6
Dry/wet=180.933.26 ×10-60.7418.117.86 ×10-40.57539
Dry/wet=379.44.7 ×10-40.7620.576.29 ×10-40.74181
2RDry/wet=085.094.76 ×10-40.65224.75.76 ×10-40.91455.7
Dry/wet=1/386.583.24 ×10-40.73160.33.39 ×10-40.92297.2
Dry/wet=185.513.64 ×10-40.771323.81 ×10-40.90262.4
Dry/wet=382.656.02 ×10-40.76120.37.14 ×10-40.95139.1
表4  1R钢和2R钢在不同浸泡条件实验21 d后的电化学阻抗谱参数
[1] Huang A Z. Production of environmental ammonium phosphate powder extinguishing agent from fertilizer grade monoammonium phosphate [J]. Phosphate Compd. Fert., 2018, 33(10): 22
[1] (黄安智. 用肥料级磷酸一铵生产环保型磷酸铵盐干粉灭火剂 [J]. 磷肥与复肥, 2018, 33(10): 22)
[2] Mu Y F, Wang Y, Yang Y. Determination of phosphorus content in MAP and DAP by ICP-AES [J]. Phosphate Compd. Fert., 2018, 33(9): 38
[2] (穆永峰, 汪耘, 杨漾. 电感耦合等离子体发射光谱法测定磷酸一铵和磷酸二铵中磷含量 [J]. 磷肥与复肥, 2018, 33(9): 38)
[3] Zhou G Y, Chen S G, Pu Q C. Technical status of industrial grade monoammonium phosphate production by WPA purification method and industrial application of its key technology [J]. Phosphate Compd. Fert., 2015, 30(3): 31
[3] (周贵云, 陈仕刚, 蒲秋岑. 湿法磷酸净化生产工业级磷酸一铵的技术现状及关键技术的工业应用 [J]. 磷肥与复肥, 2015, 30(3): 31)
[4] Chang H Q, Zhang Y. Application and problem analysis of industrial waste heat power generation system [J]. Energy Conserv., 2015, 34(9): 44
[4] (常海青, 张燕. 工业余热发电系统的应用及问题分析 [J]. 节能, 2015, 34(9): 44)
[5] Chu X L, Zhu D S. Comprehensive utilization of low temperature waste heat resources in chemical industry [J]. Mod. Chem. Res., 2020, (15): 100
[5] (褚秀玲, 朱德颂. 综合利用化工行业低温余热资源 [J]. 当代化工研究, 2020, (15): 100)
[6] Luo L H, Huang Y H, Xuan F Z. Deflection behaviour of corrosion crack growth in the heat affected zone of CrNiMoV steel welded joint [J]. Corros. Sci., 2017, 121: 11
doi: 10.1016/j.corsci.2017.01.020
[7] Huang T. Research on corrosion behavior of weathering steel in marine atmosphere of the south China sea [D]. Beijing: Central Iron & Steel Research Institute, 2018
[7] (黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究 [D]. 北京: 钢铁研究总院, 2018)
[8] Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
[9] Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
doi: 10.1016/j.corsci.2013.09.008
[10] Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
[11] Zhang Q P, Yang H Y, Wang J, et al. Influence of dry-wet cycles on the marine corrosion behavior of carbon steel [J]. Surf. Technol., 2020, 49(7): 222
[11] (张庆普, 杨海洋, 王佳 等. 干湿交替环境状态对碳钢海洋腐蚀行为的影响 [J]. 表面技术, 2020, 49(7): 222)
[12] Li C L, Ma Y T, Li Y, et al. EIS monitoring study of atmospheric corrosion under variable relative humidity [J]. Corros. Sci., 2010, 52: 3677
doi: 10.1016/j.corsci.2010.07.018
[13] Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, 710A: 318
[14] Wang T, Meng H M, Ge P F, et al. Electrochemical corrosion behavior of a CrNiMoV steel in NH4H2PO4 solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 551
[14] (王通, 孟惠民, 葛鹏飞 等. 一种CrNiMoV钢在NH4H2PO4溶液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 551)
[15] Zhang F B, Li R, Pan X X, et al. Behaviors of corrosion and inhibition of X70 steel in (NH4)2CO3 solutions [J]. Corrros. Prot., 2005, 26: 375
[15] (张付宝, 李容, 潘献晓 等. X70钢在 (NH4)2CO3溶液中腐蚀及缓蚀行为 [J]. 腐蚀与防护, 2005, 26: 375)
[16] Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corros. Sci., 2009, 51: 2826
doi: 10.1016/j.corsci.2009.08.008
[17] Hao Y W, Bo D, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
[18] Tomashov N D. Development of the electrochemical theory of metallic corrosion [J]. Corrosion, 1964, 20: 7
[19] Wang J, Tsuru T. Electrochemical measurements under thin electrocute laer using kelvin probe reference electrode [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 173
[19] (王佳, 水流彻. 使用Kelvin探头参比电极技术进行薄液层下电化学测量 [J]. 中国腐蚀与防护学报, 1995, 15: 173)
[20] Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr bearing weathering steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 93
[20] (张飘飘, 杨忠民, 陈颖 等. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 93)
[21] Xu Z X, Zhou H R, Yao W. Corrosion behavior of automotive cold rolled steels DC06 and DP600 in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 155
[21] (徐致孝, 周和荣, 姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 155)
[22] Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
doi: 10.1016/j.corsci.2003.09.028
[23] Li T. Enhanced phosphate removal efficiency by using ferrous iron and its mechanism [D]. Harbin: Harbin Institute of Technology, 2015
[23] (李婷. 亚铁强化去除水中磷酸盐的作用机制与效能 [D]. 哈尔滨: 哈尔滨工业大学, 2015)
[24] Li Q D, Ran D, Zhai F Q, et al. Effect of CO32- on the electrochemical behaviour of 14Cr12Ni3Mo2VN stainless steel in a sodium chloride solution [J]. Int. J. Electrochem. Sci., 2020, 15: 2973
[25] Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal., 2004, 36: 1564
doi: 10.1002/sia.1984
[26] Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
[27] Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
[27] (冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51)
[28] Hu J, Wang T T, Wang Z, et al. Corrosion inhibition effect research of compound corrosion inhibitor for N80 steel in HCl solution medium [J]. Petro-Chem. Equip., 2017, 46(6): 1
[28] (胡军, 王甜甜, 王祯 等. 盐酸介质中复配缓蚀剂对N80钢缓蚀效果分析研究 [J]. 石油化工设备, 2017, 46(6): 1)
[29] Ran D, Meng H M, Li Q D, et al. Effect of temperature on corrosion behavior of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 362
[29] (冉斗, 孟惠民, 李全德 等. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/LNaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 362)
[30] Lu S L. The formation and impacting mechanism of corrosion product film of low chromium alloy steel in CO2/H2S environment [D]. Beijing: University of Science and Technology Beijing, 2017
[30] (卢宋乐. 含Cr低合金钢CO2/H2S环境腐蚀产物膜形成及作用机理研究 [D]. 北京: 北京科技大学, 2017)
[31] Qian Y H, Niu D, Xu J J, et al. The influence of chromium content on the electrochemical behavior of weathering steels [J]. Corros. Sci., 2013, 71: 72
doi: 10.1016/j.corsci.2013.03.002
[32] Qian Y H, Ma C H, Niu D, et al. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels [J]. Corros. Sci., 2013, 74: 424
doi: 10.1016/j.corsci.2013.05.008
[33] Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[3] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[4] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] 刘静远, 臧庆安, 孙长军, 张翠清, 李晓峰. 煤气化水系统腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[6] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[7] 马雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[8] 卞亚飞, 汤文明, 张洁, 毛锐锐, 缪春辉, 陈国宏. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[9] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[10] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[11] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[12] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[13] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[14] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[15] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.