Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 479-485    DOI: 10.11902/1005.4537.2021.110
  研究报告 本期目录 | 过刊浏览 |
聚丙烯酸对Fe3O4的分散特性及其机理研究
宋显志, 朱志平(), 周攀, 贺明鹏, 江源康, 王正刚
长沙理工大学化学与食品工程学院 电力与交通材料保护湖南省重点试验室 长沙 410114
Effect of Polyacrylic Acid on Dispersion Characteristics of Corrosion Product Fe3O4 in Water of Power Plant and Its Mechanism
SONG Xianzhi, ZHU Zhiping(), ZHOU Pan, HE Mingpeng, JIANG Yuankang, WANG Zhenggang
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(6064 KB)   HTML
摘要: 

选择聚丙烯酸 (PAA) 作为分散剂,通过常温下分散试验探讨了不同时间 (0和24 h)、不同PAA与Fe3O4浓度比 (0、0.01、0.1、1、10) 时PAA对Fe3O4的分散特性;通过模拟二回路运行工况的高温挂片试验 (高压釜) 以及微观表征,得到了PAA对碳钢氧化膜形成的影响。结果表明,PAA的加入会使Fe3O4的Zeta电位绝对值增大,腐蚀产物Fe3O4粒径减小,PAA对Fe3O4有良好的分散作用;PAA与Fe3O4浓度比为0.1时,分散效果最佳,PAA与Fe3O4浓度比过大时,粒径增大,分散效果降低。高温挂片后SEM/EDS分析表明,随着PAA浓度增加 (0,10和100 mg/L),碳钢表面氧化物颗粒粒径减小、氧化膜更为致密均匀;随着PAA浓度增加,碳钢表面氧化物C含量增加,说明PAA参与了其表面成膜过程。上述结果可为PAA在核电厂二回路的应用提供一定理论指导。

关键词 Fe3O4PAAZeta电位粒径分散    
Abstract

The deposition of corrosion product Fe3O4 on the steam generator heat exchange tubes and supporting tube sheets is one of the main causes of corrosion accidents in the secondary circuit of nuclear power plants. Adding a dispersant can reduce the amount of corrosion product deposition. In this paper, polyacrylic acid (PAA) is selected as the dispersant, and its dispersion effect on Fe3O4 was examined in water with different concentration ratios of PAA to Fe3O4 (0, 0.01, 0.1, 1, 10) at ambient temperature for 0 and 24 h respectively. Then the effect of PAA on the dispersion characteristics of Fe3O4 was assessed via coupon test with a simulated secondary loop operating condition (autoclave), as well as the corresponding oxide scale formed on carbon steel was characterized by means of SEM with EDS. The results show that the addition of PAA will increase the absolute value of the Zeta potential of Fe3O4 and reduce the particle size of the corrosion product Fe3O4. PAA has a good dispersing effect on Fe3O4, when the concentration ratio of PAA to Fe3O4 is 0.1, the dispersion effect is the best. When the Fe3O4 concentration ratio is too large, the particle size increases and the dispersion effect decreases. With the increase of PAA concentration (0, 10 and 100 mg/L), the deposited Fe3O4 particleson the steel surfaceafter tested in autoclave are finer so that the oxide scale on carbon steel coupon was much dense and uniform. As the PAA concentration increases, the C content of oxide scale on carbon steel surface increases, indicating that PAA participates in the surface film formation process. The above results can provide certain theoretical guidance for the application of PAA in the secondary circuit of nuclear power plants.

Key wordsFe3O4    PAA    Zeta potential    particle size    dispersion
收稿日期: 2021-05-18     
ZTFLH:  TG174  
基金资助:湖南省科技计划重点项目(2013GK2016);湖南省研究生创新项目(CX20190700)
通讯作者: 朱志平     E-mail: zzp8389@163.com
Corresponding author: ZHU Zhiping     E-mail: zzp8389@163.com
作者简介: 宋显志,男,1994年生,硕士生

引用本文:

宋显志, 朱志平, 周攀, 贺明鹏, 江源康, 王正刚. 聚丙烯酸对Fe3O4的分散特性及其机理研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 479-485.
Xianzhi SONG, Zhiping ZHU, Pan ZHOU, Mingpeng HE, Yuankang JIANG, Zhenggang WANG. Effect of Polyacrylic Acid on Dispersion Characteristics of Corrosion Product Fe3O4 in Water of Power Plant and Its Mechanism. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 479-485.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.110      或      https://www.jcscp.org/CN/Y2022/V42/I3/479

图1  放置0和24 h时PAA浓度对于Fe3O4沉降的影响
图2  不同浓度比PAA与Fe3O4混合体系静置0和24 h的透光率
图3  不同浓度比PAA与Fe3O4混合体系静置0和24 h的Zeta电位
图4  不同浓度比PAA与Fe3O4混合体系粒径变化
图5  20#钢在不同浓度PAA条件下280 ℃下腐蚀80 h后的XRD
图6  20#钢在280 ℃下含不同浓度PAA的模拟二回路水中腐蚀80 h后的表面SEM像
图7  20#钢在280 ℃下含不同浓度PAA的模拟二回路水中腐蚀80 h后表面氧化物粒径分布
图8  20#钢在280 ℃下含0和100 mg/L PAA的模拟二回路水中腐蚀80 h后表面氧化膜形貌及EDS分析
图9  分散机理示意图
1 Xu Y M. Nuclear power development and corrosion protection of relevant materials [J]. Corros. Prot., 2016, 37: 523
1 徐玉明. 核电发展与核电材料的腐蚀防护 [J]. 腐蚀与防护, 2016, 37: 523
2 Kazi S N, Teng K H, Zakaria M S, et al. Study of mineral fouling mitigation on heat exchanger surface [J]. Desalination, 2015, 367: 248
3 Wang J, Sun X P, Bai L. The analysis of sludge sedimentation and control optimization of second-loop water quality in PWR nuclear power plant [J]. Nucl. Sci. Eng., 2016, 36: 858
3 王静, 孙雪平, 柏乐. 压水堆核电厂二回路水质泥渣沉积分析与控制优化 [J]. 核科学与工程, 2016, 36: 858
4 Huang L Q, Song X M, Tian B N. Study on the synthesis and dispersion performance of low molecular weight sodium polyacrylate [J]. Pap. Sci. Technol., 2016, 35(6): 46
4 黄连青, 宋晓明, 田宝农. 低分子量聚丙烯酸钠的合成及分散性能研究 [J]. 造纸科学与技术, 2016, 35(6): 46
5 Bai P K, Xu P. Synthesis and modification of green environment-friendly scale inhibitors in the field of water treatment: the state-of-art technological advances [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 87
5 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 87
6 Joshi A C, Rufus A L, Suresh S, et al. Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants [J]. J. Nucl. Mater., 2013, 437: 139
7 Artola P A, Rousseau B, Clavaguéra C, et al. Preventing iron (II) precipitation in aqueous systems using polyacrylic acid: some molecular insights [J]. Phys. Chem. Chem. Phys., 2018, 20: 18056
8 Dispersants for pressurized water reactor secondary side fouling control: 2014 field evaluations [R]. TR-3002005416, US: EPRI, 2015
9 Chen Z H, Bai Y J, Han H X, et al. Optimization the technology of fragrant pear juice clarification by the pectinase [J]. Food Ind., 2021, 42(1): 125
9 陈振昊, 白羽嘉, 韩海霞, 等. 果胶酶澄清香梨汁的工艺优化 [J]. 食品工业, 2021, 42(1): 125
10 Sizochenko N, Mikolajczyk A, Syzochenko M, et al. Zeta potentials (ζ) of metal oxide nanoparticles: a meta-analysis of experimental data and a predictive neural networks modeling [J]. NanoImpact, 2021, 22: 100317
11 Yang K J, Yao C L. Research progress in flocculation mechanism and application of cationic polymer [J]. Pap. Sci. Technol., 2019, 38(5): 19
11 杨开吉, 姚春丽. 阳离子高分子聚合物絮凝机理及应用研究进展 [J]. 造纸科学与技术, 2019, 38(5): 19
12 Li X F, Li R Z, Liu Z F, et al. Integrated functional high-strength hydrogels with metal-coordination complexes and h-bonding dual physically cross-linked networks [J]. Macromol. Rapid Commun., 2018, 39: 1800400
13 Li X F, Zhao Y J, Li D P, et al. Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution [J]. Polymer, 2017, 121: 55
14 Li X H, Deng S D, Xu X. Inhibition action of cassava starch ternary graft copolymer on steel in H2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 106
14 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 106
15 Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures [J]. Adv. Colloid Interf. Sci., 2011, 169: 1
[1] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[2] 钱超,云虹,张志国,徐群杰. 纳米ZnS增强聚苯胺复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
[3] 邵亚薇; 严川伟; 杜元龙; 王福会 . 钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 232-236 .