Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 486-492    DOI: 10.11902/1005.4537.2021.123
  研究报告 本期目录 | 过刊浏览 |
腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究
翁硕1,2,3(), 俞俊1, 赵礼辉1,2,3, 冯金芝1,2,3, 郑松林1,2,3
1.上海理工大学机械工程学院 上海 200093
2.机械工业汽车机械零部件强度与可靠性评价重点实验室 上海 200093
3.上海市新能源汽车可靠性评价公共技术平台 上海 200093
Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy
WENG Shuo1,2,3(), YU Jun1, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3, ZHENG Songlin1,2,3
1.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3.Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
全文: PDF(12606 KB)   HTML
摘要: 

为研究腐蚀损伤对AA7075-T651铝合金疲劳行为的影响,首先分别将AA7075-T651铝合金试样浸泡在3.5% (质量分数) NaCl溶液中150和500 h,然后,使用含腐蚀损伤试样进行疲劳试验,获得含不同腐蚀损伤特征试样的疲劳寿命分布特征。结果表明,与原始试样的疲劳寿命相比,相同载荷条件下腐蚀损伤会明显地降低铝合金的疲劳寿命,但是,尽管浸泡500 h试样的腐蚀损伤特征尺寸明显大于浸泡150 h的,两者的疲劳寿命差异却并不明显。针对腐蚀损伤特征与疲劳寿命的关系,本文采用缺口系数相关的Stromeyer三参数S-N预测模型,对含腐蚀损伤铝合金试样的疲劳寿命进行了预测分析,实验结果基本分布在预测结果的二倍分散带内,有效地验证了该寿命预测方法的准确性。

关键词 腐蚀损伤疲劳寿命AA7075-T651铝合金    
Abstract

The fatigue test for the 7075-T651 Al-alloy samples with and without being immersed in 3.5% (mass fraction) NaCl solution for 150 and 500 h, respectively, was carried out, in order to reveal the influence of corrosion damage on the fatigue behavior of the alloy. The results show that compared to the blank alloy samples, the fatigue life of 7075-T651 Al-alloy subjected to immersion corrosion is significantly reduced due to the presence of corrosion damage. The size of corrosion pits in the specimens immersed for 500 h are much large than those for 150 h, but the fatigue life of the two types of specimens with corrosion damage are more or less at the same stress level. Based on the fatigue notch coefficient theory and Stromeyer three-parameter S-N curve formula, the life of the damaged Al-alloy sample was predicted, and the predicted results totally located in the double dispersion band, which indicates that the predicted formula fits well with the results of experimental results.

Key wordscorrosion damage    fatigue life    AA7075-T651Al-alloy
收稿日期: 2021-05-31     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(52005336);中国博士后基金面上项目(2020M671167);上海市科委“扬帆计划”(19YF1434400)
通讯作者: 翁硕     E-mail: wengshuo@usst.edu.cn
Corresponding author: WENG Shuo     E-mail: wengshuo@usst.edu.cn
作者简介: 翁硕,男,1988年生,博士,讲师

引用本文:

翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
Shuo WENG, Jun YU, Lihui ZHAO, Jinzhi FENG, Songlin ZHENG. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 486-492.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.123      或      https://www.jcscp.org/CN/Y2022/V42/I3/486

图1  AA7075-T651铝合金在光镜下的微观组织
图2  疲劳试验试样的详细尺寸
图3  浸泡500 h后试样表面腐蚀形貌
图4  腐蚀500 h试样的横截面形貌
图5  不同浸泡时间后疲劳试样的S-N曲线
Specimen typeS-N curve equationcm
As-receivedlgσ=3.50-0.20lgN1017.394.97
150 h specimenlgσ=3.91-0.33lgN1011.843.03
500 h specimenlgσ=3.53-0.25lgN1014.154.01
表1  S-N曲线方程及材料常数
图6  裂纹萌生于T-L平面和从几何拐角处萌生的原始试样在疲劳失效后的断口形貌
图7  预腐蚀150和500 h试样在疲劳失效后的断口形貌
图8  萌生位置统计
Stress / MPad / μmc / μmKf
200550404.162.61
200346.67293.332.54
2005854052.24
2001200741.172.67
250507.41174.072.93
250462.5437.52.48
350448.15288.892.68
350488.89340.742.64
350644.17184.052.98
350116.67502.83
表2  腐蚀坑几何尺寸参数
图9  预测寿命与实验数据的对比
1 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
1 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
2 Chen Y L, Wu S J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state [J]. Equip. Environ. Eng., 2020, 17(6): 44
2 陈跃良, 吴省均, 张勇等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律 [J]. 装备环境工程, 2020, 17(6): 44
3 Tan X M, Zhang D F, Bian G X, et al. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy [J]. J. Mech. Eng., 2014, 50(22): 76
3 谭晓明, 张丹峰, 卞贵学等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用 [J]. 机械工程学报, 2014, 50(22): 76
4 Chen Y L, Bian G X, Yi L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue [J]. J. Mech. Eng., 2012, 48(20): 73
4 陈跃良, 卞贵学, 衣林等. 腐蚀和疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究 [J]. 机械工程学报, 2012, 48(20): 73
5 Sun X G, Wang Z H, Xu X X, et al. Effect of industrial atmospheric environment on corrosion fatigue behavior of Al-Mg-Si alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 501
5 孙晓光, 王子晗, 徐学旭等. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 501
6 Song H P, Liu C C, Zhang H, et al. Experimental investigation on damage evolution in pre-corroded aluminum alloy 7075-T7651 under fatigue loading [J]. Mater. Sci. Eng., 2021, 799A: 140206.
7 Chen Y P, Zeng B Y, Yu J J, et al. Fatigue life prediction method of pre-corroded aluminum matrix composite [J]. Corros. Prot., 2021, 42(1): 36
7 陈亚萍, 曾本银, 喻溅鉴等. 预腐蚀铝基复合材料疲劳寿命的预测方法 [J]. 腐蚀与防护, 2021, 42(1): 36
8 Xu L, Yu X, Hui L, et al. Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1353
9 Zhan Z X, Yu X, Hu W P, et al. Damage mechanics-based approach for fatigue life prediction of aluminum alloy with pre-corrosion damage [J]. J. Beijing Univ. Aeron. Astron., 2021,
9 詹志新, 余洵, 胡伟平等. 基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测 [J]. 北京航空航天大学学报, 2021,
10 Basquin O H. The exponential law of endurance tests [J]. Am. Soc. Test. Mater., 1910, 10: 625
11 Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 16
11 钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 16
12 Liu L L, Jiang F, Wang Y, et al. Fatigue fractography of 5A06 aluminum alloy under different stresses [J]. Aerosp. Mater. Technol., 2015, 45(5): 70
12 刘乐乐, 姜锋, 汪莹等. 不同应力水平下5A06铝合金的疲劳断口研究 [J]. 宇航材料工艺, 2015, 45(5): 70
13 Zhou S, Xie L Y, Hui L, et al. Fatigue life degenerating rule of pre-corroded aviation aluminum alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2016, 37: 969
13 周松, 谢里阳, 回丽等. 航空铝合金预腐蚀疲劳寿命退化规律 [J]. 东北大学学报 (自然科学版), 2016, 37: 969
14 Wang Y L, Pan Q L, Wei L L, et al. Fatigue fracture characteristic of 7050-T7451 high-strength aluminum alloy thick plate [J]. Mater. Mech. Eng., 2013, 37(6): 26
14 王艺淋, 潘清林, 韦莉莉等. 高强7050-T7451铝合金厚板的疲劳断口特征 [J]. 机械工程材料, 2013, 37(6): 26
15 Deng J H, Chen P J, Fu Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys [J]. Acta Aeron. Astronau. Sin., 2018, 39(2): 221421
15 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型 [J]. 航空学报, 2018, 39(2): 221421
16 Chaussumier M, Mabru C, Shahzad M, et al. A predictive fatigue life model for anodized 7050 aluminium alloy [J]. Int. J. Fatigue, 2013, 48: 205
17 Yin Z P, Xie C. Structural Fatigue and Fracture [M]. Xi'an: Northwestern Polytechnical University Press, 2012: 6
17 殷之平, 谢传. 结构疲劳与断裂 [M]. 西安: 西北工业大学出版社, 2012: 6
18 Wu S C, Ren X Y, Kang G Z, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components [J]. J. Traffic Trans. Eng., 2021, 21(1): 81
18 吴圣川, 任鑫焱, 康国政等. 铁路车辆部件抗疲劳评估的进展与挑战 [J]. 交通运输工程学报, 2021, 21(1): 81
[1] 詹玉婷, 王建华, 靳凯, 陈建彬, 王虎军, 方军, 陈卫林, 随磊. 喷丸强化对自制螺母疲劳寿命性能的影响分析[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[2] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[3] 王刚,金平,谭晓明,王德. 海洋环境下7B04铝合金腐蚀损伤演化规律研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.
[4] 包俊成,赵捷,王志奇,马叙. 钛合金BT20焊接接头腐蚀疲劳性能的实验研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 313-316.
[5] 常红; 韩恩厚; 王俭秋; 柯伟 . 飞机蒙皮涂层对LY12CZ铝合金腐蚀疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[6] 刘祖铭 . 环境对LY12CZ铝合金典型螺接件疲劳性能的影响[J]. 中国腐蚀与防护学报, 2004, 24(5): 267-271 .