Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 765-774    DOI: 10.11902/1005.4537.2020.205
  研究报告 本期目录 | 过刊浏览 |
Zn及锌锂合金在人工尿液中的腐蚀行为
陆黎立1, 刘丽君1, 姚生莲1, 李华芳1, 王鲁宁1,2()
1.北京科技大学材料科学与工程学院 北京 100083
2.北京科技大学 新金属材料国家重点实验室 北京 100083
Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine
LU Lili1, LIU Lijun1, YAO Shenglian1, LI Huafang1, WANG Luning1,2()
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(15161 KB)   HTML
摘要: 

通过体外浸泡实验及电化学测试的方法,研究了Zn-xLi (x=0,0.5%,0.8%) 在人工尿液 (AU) 中长达28 d的腐蚀行为。结果表明,尽管浸泡过程中,样品依然存在结壳现象,但对比前人研究过的几种金属,Zn/Zn-xLi结壳现象有所缓解,这在输尿管植入应用中是十分可喜的现象。样品在人工尿液中的腐蚀产物为CaZn2(PO4)2·2H2O,电化学测定浸泡28 d后样品的腐蚀速率为0.21~0.34 mm·a-1

关键词 降解锌锂合金输尿管支架人工尿液    
Abstract

Zn-based materials have been adopted as candidate material of biodegradable implants and some researches give the evidence that Zn-based materials are promising as degradable scaffold. This paper will reveal the degradation behavior of Zn-xLi (x=0, 0.5%, 0.8%) alloys in artificial urine (AU). The corrosion behavior of pure Zn and Zn-xLi alloys in AU up to 28 d were investigated by means of immersion test and electrochemical approach. The results indicate that even the Zn and Zn-xLi alloys display encrustation in artificial urine, however, the encrustation degree in the present study was alleviated compared with other alloys studied previously, which seems a very encouraging phenomenon in the application for ureteral stent implantation. The corrosion products of the Zn and Zn-xLi alloys in AU was CaZn2(PO4)2·2H2O and the corresponding corrosion rate was in the range of 0.21 to 0.34 mm·a-1 for the Zn and Zn-xLi alloys after immersion for 28 d.

Key wordsdegradation    Zn-Li alloy    ureteral stent    artificial urine
收稿日期: 2020-10-22     
ZTFLH:  TG172  
基金资助:国家重点研发项目(2016YFC251100);国家自然科学;基金(51503014)
通讯作者: 王鲁宁     E-mail: luning.wang@ustb.edu.cn
Corresponding author: WANG Luning     E-mail: luning.wang@ustb.edu.cn
作者简介: 陆黎立,女,1994年生,硕士生

引用本文:

陆黎立, 刘丽君, 姚生莲, 李华芳, 王鲁宁. Zn及锌锂合金在人工尿液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(6): 765-774.
Lili LU, Lijun LIU, Shenglian YAO, Huafang LI, Luning WANG. Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 765-774.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.205      或      https://www.jcscp.org/CN/Y2021/V41/I6/765

图1  3种材料不同浸泡时间OCP的变化
图2  3种材料极化曲线及腐蚀电流密度随时间的变化
Samplet / dEcorr / V vs SCEIcorr / µA·cm-2c / V·dec-1
Pure Zn0-1.13±0.0136.23±19.860.21±0.01
3-1.06±0.0117.36±1.760.26±0.02
7-1.01±0.0011.37±1.030.42±0.01
14-1.02±0.0117.46±2.640.55±0.15
21-1.02±0.0118.89±5.120.49±0.12
28-1.05±0.0222.74±3.680.46±0.16
Zn-0.5Li0-1.11±0.0544.27±6.790.25±0.07
3-1.05±0.0115.34±5.750.41±0.14
7-1.05±0.0118.14±1.240.39±0.03
14-1.06±0.0117.98±3.490.40±0.07
21-1.06±0.0117.82±2.060.28±0.04
28-1.05±0.0118.08±2.610.39±0.01
Zn-0.8Li0-1.13±0.0031.38±8.710.21±0.05
3-1.04±0.0119.88±4.470.41±0.08
7-1.03±0.0217.52±0.470.40±0.00
14-1.05±0.0118.33±2.030.42±0.05
21-1.05±0.0018.14±2.040.36±0.09
28-1.06±0.0126.21±2.750.35±0.06
表1  Zn/Zn-xLi在人工尿液中浸泡不同时间后的电化学参数
图3  Zn/Zn-xLi在人工尿液中浸泡不同时间后的Nyquist图,拟合电路图及Rf和Rt变化
Samplet / dRs / Ω·cm2Qf / 10-5·Ω-1·s-1·cm-2n1Rf / kΩ·cm2Qdl / 10-3 Ω-1·s-1·cm-2n2Rct / kΩ·cm2Rt / kΩ·cm2
Pure Zn05.94±1.640.02±0.010.56±0.010.05±0.015.26±0.370.84±0.070.28±0.390.33±0.11
38.74±0.632.10±1.380.84±0.080.16±0.083.24±1.610.50±0.020.95±0.321.11±0.40
78.80±0.371.03±0.100.91±0.011.36±0.357.24±3.840.77±0.250.62±0.171.98±0.33
148.65±1.541.04±0.090.91±0.010.78±0.123.10±0.500.10±0.070.70±0.301.54±0.39
219.38±0.082.11±0.720.82±0.000.49±0.136.12±0.930.66±0.050.55±0.101.04±0.03
289.12±1.633.41±2.240.81±0.090.30±0.23.17±2.320.54±0.130.77±0.301.07±0.50
Zn-0.5Li011.28±1.040.39±0.010.75±0.070.04±0.010.39±0.180.71±0.120.20±0.010.33±0.15
310.16±0.300.54±0.070.92±0.011.62±0.821.05±0.740.56±0.741.73±1.245.05±1.72
710.52±0.350.85±0.220.91±0.020.51±0.282.04±0.010.53±0.042.50±0.594.84±2.28
1410.37±1.002.09±0.590.85±0.030.35±0.022.70±0.650.49±0.084.09±2.953.64±2.04
2110.49±0.603.46±0.600.79±0.030.27±0.112.86±0.980.67±0.104.79±1.336.32±5.55
2810.12±0.472.32±0.380.84±0.020.37±0.164.03±1.440.56±0.065.25±3.447.28±6.43
Zn-0.8Li011.04±0.360.24±0.220.81±0.020.04±0.032.65±0.890.90±0.141.12±1.200.28±0.08
311.33±0.781.19±0.400.88±0.040.42±0.172.77±0.860.65±0.121.83±0.602.25±0.53
712.95±1.921.68±1.110.85±0.100.69±0.012.60±0.680.65±0.221.52±0.872.21±0.87
1410.18±0.332.03±1.030.85±0.050.33±0.183.02±0.690.56±0.091.24±0.691.57±0.65
2110.28±0.791.82±0.540.85±0.040.31±0.063.17±0.640.53±0.052.05±1.322.36±1.32
2810.87±0.054.60±0.210.76±0.020.20±0.044.33±1.180.53±0.030.95±0.251.51±0.25
表2  EIS拟合电路各元件参数
Time / dPure ZnZn-0.5LiZn-0.8Li
00.54±0.300.52±0.080.37±0.01
30.26±0.030.18±0.070.23±0.05
70.17±0.020.21±0.010.21±0.01
140.26±0.040.21±0.040.22±0.02
210.28±0.080.21±0.030.21±0.02
280.34±0.050.21±0.030.31±0.03
表3  电化学测试得到的腐蚀速率
图4  纯Zn、Zn-0.5Li与Zn-0.8Li 3种样品在AU中浸泡不同时间后的微观腐蚀形貌
Time / dPure ZnZn-0.5LiZn-0.8Li
30.66±1.120.24±0.010.20±0.02
70.77±0.140.59±0.030.38±0.03
140.84±0.040.82±0.050.57±0.07
210.82±0.010.78±0.110.84±0.04
280.76±0.040.77±0.030.88±0.01
表4  浸泡不同时间样品表面P/Zn 原子含量比
图5  样品在AU中浸泡不同时间后截面信息
图6  纯Zn、Zn-0.5Li和Zn-0.8Li合金在AU浸泡中的pH值、Zn2+释放量以及合金结壳性随浸泡时间变化的趋势线
图7  样品表面XRD分析
图8  纯锌及锌合金在人工尿液中腐蚀过程示意图
Time / dNiTi316LSS316LCuSSPure ZnZn-0.5LiZn-0.8Li
144.54.13.92.4±0.11.8±0.10.5±0.1
285.15.24.91.5±0.02.0±0.50.9±0.2
表6  Zn/Zn-xLi及部分金属同期结壳性对比
1 Lin L Y, Liu Q H. Clinical efficacy and safety of URSL in the treatment of ureteral calculi in different position [J]. Jilin Med. J., 2020, 41: 1822
1 林立英, 刘渠贺. 输尿管镜钬激光碎石术 (URSL) 治疗不同部位输尿管结石的临床疗效及安全性研究 [J]. 吉林医学, 2020, 41: 1822
2 Chaabouni A, Binous M Y, Zakhama W, et al. Spontaneous calyceal rupture caused by a ureteral calculus [J]. Afr. J. Urol., 2013, 19: 191
3 Cho C L. A knotted ureteral stent [J]. Urol. Case Rep., 2020, 33: 101327
4 Irani J, Siquier J, Pirès C, et al. Symptom characteristics and the development of tolerance with time in patients with indwelling double-pigtail ureteric stents [J]. BJU Int., 1999, 84: 276
5 Lorca A J, Laso G, Arias F F, et al. Self-expanding metallic ureteral stents in complex ureteral stenosis: Long-term results after two decades of experience [J]. Eur.Urol. , 2019, 18: e3014
6 Wang H J, Lee T Y, Luo H L, et al. Application of resonance metallic stents for ureteral obstruction [J]. BJU Int., 2011, 108: 428
7 Zhao J, Cao Z Q, Ren L, et al. A novel ureteral stent material with antibacterial and reducing encrustation properties [J]. Mater. Sci. Eng., 2016, 68C: 221
8 Frattolin J, Roy R, Rajagopalan S, et al. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material [J]. Acta Biomater., 2019, 99: 479
9 Scarcello E, Lobysheva I, Bouzin C, et al. Endothelial dysfunction induced by hydroxyl radicals-the hidden face of biodegradable Fe-based materials for coronary stents [J]. Mater. Sci. Eng., 2020, 112C: 110938
10 Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies [J]. Acta Biomater., 2010, 6: 1852
11 Wang S, Zhang X Q, Li J G, et al. Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material [J]. Bioact. Mater., 2020, 5: 1
12 Zhang J, Li H Y, Wang W, et al. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]. Acta Biomater., 2018, 69: 372
13 Mao L, Zhou H, Chen L, et al. Enhanced biocompatibility and long-term durability in vivo of Mg-Nd-Zn-Zr alloy for vascular stent application [J]. J. Alloy. Compd., 2017, 720: 245
14 Hanada K, Matsuzaki K, Huang X S, et al. Fabrication of Mg alloy tubes for biodegradable stent application [J]. Mater. Sci. Eng., 2013, 33C: 4746
15 Zhang S Y, Zheng Y, Zhang L M, et al. In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model [J]. Mater. Sci. Eng., 2016, 68C: 414
16 Mostaed E, Sikora-Jasinska M, Mostead A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
17 Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
18 Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
19 Liu X, Yang H T, Xiong P, et al. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions [J]. Corros. Sci., 2019, 157: 205
20 Yue R, Niu J L, Li Y T, et al. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications [J]. Mater. Sci. Eng., 2020, 113C: 111007
21 Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
22 Champagne S, Mostaed E, Safizadeh F, et al. In vitro degradation of absorbable zinc alloys in artificial urine [J]. Materials, 2019, 12: 295
23 Paramitha D, Chabaud S, Bolduc S, et al. Biological assessment of Zn-based absorbable metals for ureteral stent applications [J]. Materials, 2019, 12: 3325
24 Liu F, Chen C X, Niu J L, et al. The processing of Mg alloy micro-tubes for biodegradable vascular stents [J]. Mater. Sci. Eng., 2015, 48C: 400
25 Hao Y. Fabrication, mechanical properties and biocompatibility of biodegradable Zn-Li alloy [D]. Beijing: University of Science & Technology Beijing, 2018
25 郝园. 可降解Zn-Li合金的制备及性能研究 [D]. 北京: 北京科技大学, 2018
26 Hu H F. The in vitro study on the biodegradability and the release behavior of a novel biodegradable material of drug-loading ureteral stents [D]. Wuhan: Huazhong University of Science and Technology, 2013
26 胡海峰. 输尿管支架材料降解性能和药物释放性能的研究 [D]. 武汉: 华中科技大学, 2013
27 Guo G C, Mo Z Y, Wu Q Y, et al. Effect of rare earth element cerium on Zinc phosphating process at middle temperature [J]. Electroplat. Pollut. Control, 2018, 38(4): 37
27 郭国才, 莫振宇, 吴清源等. 稀土铈对中温锌系磷化的影响 [J]. 电镀与环保, 2018, 38(4): 37
28 Ren B B. Study on evaluation method of phosphating film quality of cold rolled car plate [J]. China Coat., 2018, 33(1): 66
28 任彬彬. 冷轧汽车板磷化膜品质的评价方法研究 [J]. 中国涂料, 2018, 33(1): 66
29 Xin Y C, Huo K F, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment [J]. Acta Biomater., 2008, 4: 2008
30 Sziráki L, Szőcs E, Pilbáth Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques [J]. Electrochim. Acta, 2001, 46: 3743
31 Jia Y Z, Wang B J, Zhao M J, et al. Effect of solid solution treatment on corrosion and hydrogen evolution behavior of an As-extruded Mg-Zn-Y-Nd alloy in an artificial body fluid [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 351
31 郏义征, 王保杰, 赵明君等. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究 [J]. 中国腐蚀与防护学报, 2020, 40: 351
32 Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 36: 463
32 郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 36: 463
33 Mou Z Q, Liang C H. Effect of different artificial body fluids and their pH on corrosion of biomedical mettallic materials [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 126
33 牟战旗, 梁成浩. 不同模拟体液及pH值变化对人体用金属生物材料耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 126
34 Wang J, Liu L. The research progress of urine pH change and urolithiasis [J]. J. Guiyang Coll. TCM, 2015, 37(4): 98
34 汪建, 刘玲. 尿液pH改变与尿石症的研究进展 [J]. 贵阳中医学院学报, 2015, 37(4): 98
35 Zhou M Y. Effect of free F- and oxidant on phosphating of Al-Mg alloy [J]. Mater. Prot., 1998, 31(7): 13
35 周谟银. 游离F-和氧化剂对铝镁合金 (LF2) 磷化过程的影响 [J]. 材料保护, 1998, 31(7): 13
36 Dai C L, Li Z, Zhang Q G, et al. Film forming mechanism of calcium-modified phosphating coating on galvanized steel [J]. Electroplat. Pollut. Control, 2007, 27(6): 26
36 戴崇良, 李智, 张强国等. 镀锌钢板钙改性磷化膜生长机理的研究 [J]. 电镀与环保, 2007, 27(6): 26
[1] 杨小刚 邵丽艳 张树芳 焦 巍 李言涛 侯保荣. 海水中水溶性壳聚糖及其降解产物对低碳钢缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 325-330.