Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 335-342    DOI: 10.11902/1005.4537.2015.155
Current Issue | Archive | Adv Search |
Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Denitrification
Shuangchen MA1(),Yue DENG1,Wenlong WU2,Yu TAN1,Linan ZHANG1,Feng CHAI1,Panpan SUN1,Xiaoni ZHANG2
1. College of Environmental Science and Engineering, North China Electric Power University (Baoding), Baoding 071003, China
2. Electric Power Test Research Institute of Henan Province, Zhengzhou 450052, China
Download:  HTML  PDF(3133KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of the boiler tail material which is made of carbon steel and stainless steel in solutions of ammonium bisulfate (ABS) and H2SO4 respectively was studied by means of mass loss measurement and potentiodynamic polarization curve as well as SEM/EDS and XPS. The results showed that: stainless steel has better corrosion resistance to ABS, and with the increase of ABS solution concentration, corrosion becomes more intensive. The corrosion products consist of Fe2O3, FeOOH, Fe3O4, iron sulfate and a small amount of iron carbon oxide. The corrosion process of carbon steel and stainless steel is similar in the solutions with the same concentration of ABS and sulfuric acid. It can be concluded that ABS has stronger corrosivity. The corrosion mechanism is that hydrogen depolarization first may occur during the corrosion of carbon steel, and then generate hydrogen. As the acid consumption, as well as the effect of dissolved oxygen in the solution, the oxygen depolarization corrosion will happen on metal surface, Fe2+ is then further oxidized to Fe3+, produces a series of secondary reaction, to generate iron oxide and sulfate, etc.

Key words:  SCR      ABS      H2SO4      weight loss method      corrosion performance     

Cite this article: 

Shuangchen MA,Yue DENG,Wenlong WU,Yu TAN,Linan ZHANG,Feng CHAI,Panpan SUN,Xiaoni ZHANG. Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Denitrification. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 335-342.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.155     OR     https://www.jcscp.org/EN/Y2016/V36/I4/335

Steel C Si Mn S P Cr Ni Cu Fe
20# 0.21 0.25 0.35 0.03 0.035 0.21 0.25 0.20 Bal.
304ss 0.08 0.95 1.91 0.01 0.034 18.41 8.14 0 Bal.
Table 1  Chemical compositions of 20# carbon steel and 304 stainless steel (mass fraction / %)
Fig.1  SEM images of carbon steel after corrosion in 3000 mg/L ABS (a) and 3000 mg/L H2SO4 (b) solution
Fig.2  SEM image of 304 stainless steel after corrosion in 3000 mg/L ABS solution
Fig.3  Corrosion rates of 20# carbon steel in different concentrations of ABS and sulfuric acid solutions
Solution Concentration
mgL-1
Time
h
Superficial areacm2 Original mass / g Present mass / g Mass lossg Corrosion rate
g / (m2h)
Blank --- 1440 24.3442 30.753 30.505 0.249 0.071
ABS 300 1440 24.7330 26.294 26.030 0.264 0.074
3000 1440 24.7330 26.189 25.802 0.388 0.109
30000 1440 26.354 28.443 26.889 1.55546 0.410
H2SO4 300 1440 29.428 29.189 28.853 0.337 0.079
3000 1440 23.891 26.015 25.279 0.735 0.214
30000 1440 27.113 29.188 27.195 1.993 0.511
Table 2  Mass changes and corrosion rates of 20# carbon steel during corrosion
Solution Concentration
mgL-1
Time
h
Superficial area / cm2 Originalmass / g Present mass / g Mass loss / g Corrosion rate
×10-3 g / (m2h)
Blank --- 1440 21.337 15.8167 15.8133 0.0034 1.1066
ABS 300 1440 24.303 18.1529 18.1490 0.0039 1.1144
3000 1440 21.215 15.7885 15.7802 0.0083 2.7169
30000 1440 21.756 16.2335 16.2232 0.0103 3.3715
H2SO4 300 1440 21.630 16.127 16.121 0.005 1.702
3000 1440 21.627 16.005 15.996 0.008 2.601
30000 1440 21.030 15.335 15.324 0.011 3.632
Table 3  Mass changes and corrosion rates of 304 stainless steel during corrosion
Fig.4  Corrosion rates of 304 stainless steel in different co-ncentrations of ABS and sulfuric acid solutions
Fig.5  EDS results and corrosion surface compositions of carbon steel immersed in 3000 mg/L(a) and 30000 mg/L (b) ABS solutions for 60 d
Fig.6  Potentiodynamic polarization curves of 20# carbon steel in different concentrations of ABS solution
Fig.7  Potentiodynamic polarization curves of 20# carbon steel in 3000 mg/L ABS and H2SO4 solutions
Fig.8  Potentiodynamic polarization curves of 304 stainless steel in different concentrations of ABS solution
Fig.9  Potentiodynamic polarization curves of 304 stainless steel in 3000 mg/L ABS and H2SO4 solutions
Fig.10  XPS full spectrum of 20# carbon steel immersed in 300 mg/L (a) and 3000 mg/L (b) ABS solutions for 60 d
Fig.11  C1s (a, d), O1s (b, e), Fe2p (c, f) and S2p (g) peaks of 20# steel after corrosion in 300 mg/L (a~c) and 30000 mg/L (d~g) ABS solutions for 60 d
[1] Long X L, Xin Z L, Wang H X, et al.Simultaneous removal of NO and SO2 with hexamminecobalt (II) solution coupled with the hexamminecobalt (II) regeneration catalyzed by activated carbon[J]. Appl. Catal. B-Enviro., 2004, 54: 25
[2] Ma S C, Jin X, Sun Y X, et al.The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control[J]. Therm. Power Gener., 2010, 39(8): 12
[3] Ma S C, Guo M, Song H H, et al.Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Therm. Power Gener., 2014, 43(2): 75
[4] Xiong Z B, Lu C M, Han K H, et al.Effect of precipitants on selective catalytic reduction of NO by NH3 over iron-cerium mixed metal oxide catalyst[J]. J. China Coal Soc., 2013, 38(1): 201
[4] (熊志波, 路春美, 韩奎华等. 沉淀剂对铁铈复合氧化物催化剂SCR脱硝性能的影响[J]. 煤炭学报, 2013, 38(1): 201)
[5] Liu F D, Shan W P, Shi X Y, et al.Vanadium-based catalysts for the selective catalytic reduction of NOx with NH3[J]. Prog. Chem., 2012,24(4): 446
[6] Gildas G, Kamel B, Nadia H, et al.The corrosion protection behavior of zinc rich epoxy paint in 3%NaCl solution[J]. Adv. Chem. Eng. Sci., 2011, 1(2): 51
[7] Tan Y, Liang K X, Zhang S H.Semiconductor properties of the passive film formed on Ni201 in neutral solution[J]. Acta Metall. Sin., 2012, 48(8): 971
[7] (檀玉, 梁可心, 张胜寒. 光电化学响应分析Ni201在中性溶液中形成表面钝化膜的半导体性质[J]. 金属学报, 2012, 48(8): 971)
[8] Nagarajan S, Karthega M, Rajendran N.Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy[J]. J. Appl. Electrochem., 2007, 37: 195
[9] Zhou J L, Li X G, Du C W, et al.Anodie electrochemical behavior of X80 pipeline steel in NaHCO3 solution[J]. Acta Metall. Sin., 2010, 46(2): 251
[9] (周建龙, 李晓刚, 杜翠薇等. X80管线钢在NaHCO3溶液中的阳极电化学行为[J]. 金属学报, 2010, 46(2): 251)
[10] Wang J Y, Kong X D.Electrochemical corrosion behavior of two Al-based alloys in 3%NaCl solution[J]. Corros. Sci. Prot. Technol., 2011, 23(1): 41
[10] (汪俊英, 孔小东. 两种铝合金在3%NaCl溶液中的腐蚀特性[J].腐蚀科学与防护技术, 2011, 23(1): 41)
[11] Chen F, Xie L X, Sun C, et al.Study the corrosion phenomenon of aluminum alloy in the seawater by potentiodynamic polarization curve method[J]. Tianjin Chem. Ind., 2014, 28(5): 12
[11] (陈飞, 解利昕, 孙晨等. 动电位极化曲线法研究铝合金材料在海水中腐蚀现象[J]. 天津化工, 2014, 28(5): 12)
[12] Yue C B, Fang D, Liu L, et al.Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unitreactions[J]. J. Mol. Liq., 2011, 163(3): 99
[1] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[2] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[3] Shuangchen MA, Kunling JIAO, Linan ZHANG, Yao SUN, Wenlong WU, Xiaoni ZHANG. Corrosion Characteristics of Carbon Steel in High Temperature Gas Containing Ammonium Bisulfate and Ammonium Sulfate[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[4] Guangyi CAI,Haowei WANG,Weihang ZHAO,Zehua DONG. Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[5] Xinhua ZHANG,Zhongkang ZHOU,Qunjie XU,Xiaochun CHEN,Aijun YAN,Qiangqiang LIAO,Honghua GE. Anti-corrosion Performance of Nickel-rich Conductive Coatings in Simulated Seawater[J]. 中国腐蚀与防护学报, 2017, 37(2): 189-194.
[6] Mingjun CUI,Siming REN,Guang'an ZHANG,Shuan LIU,Haichao ZHAO,Liping WANG,Qunji XUE. Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[7] Xudong CHENG,Lianfang SUN,Zhifeng CAO,Xingji ZHU. Cracking Process Analysis of Concrete Cover Caused by Non-uniform Corrosion[J]. 中国腐蚀与防护学报, 2015, 35(3): 257-264.
[8] MENG Fanjiang,WANG Jianqiu,HAN En-Hou,KE Wei. Stress Corrosion Crack Initiation for Scratched Alloy 690TT in Oxygenated High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
[9] SHI Jianmin,ZHANG Ling,CHEN Jing,SHEN Chunlei,LEI Jiarong,ZHOU Xiaosong. Corrosion Behavior of Al-B4C Composite in Spent Nuclear Fuel Storage Environments[J]. 中国腐蚀与防护学报, 2013, 33(5): 419-424.
[10] SU Jingxin,BAI Yun,GUAN Qingfeng,ZOU Yang. Electrochemical Impedance Spectroscopy Analysis of Failure of Aircraft Surface Coating[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.
[11] WANG Shidong,HAN Peihong,MA Rongyao,LI Moucheng,SHEN Jianian. Effect of Urea on Condensates Corrosion of Stainless Steels in Simulated Automotive Exhaust Environments[J]. 中国腐蚀与防护学报, 2013, 33(1): 41-46.
[12] CAO Kun, LI Weihua, YU Liangmin, LI Yunju,HOU Baorong. THEORETICAL STUDY OF PYRAZOLONE AS CORROSION INHIBITOR OF STEEL IN 1 mol/L HCl MEDIA[J]. 中国腐蚀与防护学报, 2010, 30(4): 278-282.
[13] Chuanwei Yan. EIS Study On The Anti-corrosion Performance of Polymer/Dacromet Composite Systems in 3.5% NaCl Solution[J]. 中国腐蚀与防护学报, 2006, 26(2): 89-93 .
[14] XVwen Feng; Xingpeng Guo. STUDY ON THE CORRELATION BETWEEN CO2ABSORPTION MECHANISMS AND CORROSIONBEHAVIOR OF ALKANOLAMINE SOLUTIONS[J]. 中国腐蚀与防护学报, 2003, 23(2): 79-83 .
[15] Xueyun Zhang; Enhou Han. IN-SITU INFRARED REFLECTION ABSORPTION SPECTROSCOPY STUDIES OF CONFINED ZINC SURFACES EXPOSED UNDER PERIODIC WET-DRY CONDITIONS[J]. 中国腐蚀与防护学报, 2002, 22(1): 32-36 .
No Suggested Reading articles found!