Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 331-337    DOI: 10.11902/1005.4537.2018.176
Current Issue | Archive | Adv Search |
Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere
DENG Junhao1,HU Jiezhen1,DENG Peichang2,WANG Gui1(),WU Jingquan1,WANG Kun1
1. School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2. School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
Download:  HTML  PDF(14303KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the existed oxide scales on the initial corrosion behavior of SPHC hot rolled steels was assessed via field exposure in tropical marine atmosphere with features of high temperature, humidity, salinity and strong irradiation in a test site at Zhanjiang district for 15, 30, 90 and 180 d. After exposure test, the steel samples were then characterized by means of XRD and SEM with EDS, while their polarization curves were also measured in 3.5% (mass fraction) NaCl solution by Autolab. The results show that the existed oxide scales on the rolled steel consist mainly of Fe3O4, which can obviously slow down the initial corrosive rate of the steel. As the corrosion progresses, the oxide scales will gradually transform into the rust layers and corrosion products are constantly generated, the corrosion behavior of the steel samples with and without the existed oxide scales tend gradually to be consistent, and the difference of their corrosion rates turn to be small. In sum, the existed oxide scales can slow down the initial corrosion rate of the rolled steel without changing the composition of corrosion products at all.

Key words:  oxide scales      atmospheric corrosion      SPHC hot rolled steel      rust layer     
Received:  26 November 2018     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China(51801033)
Corresponding Authors:  Gui WANG     E-mail:  wanggui@163.com;wanggdou@163.com

Cite this article: 

DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 331-337.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.176     OR     https://www.jcscp.org/EN/Y2019/V39/I4/331

Fig.1  Variations of the corrosion rates of SHPC hot rolled steel without and with oxide scales in 180 d exposure period
Fig.2  Surface macroscopic morphologies of SPHC hot rolled steel samples with (a1~a4) and without (b1~b4) oxide scales after exposure for 15 d (a1, b1), 30 d (a2, b2), 90 d (a3, b3) and 180 d (a4, b4)
Fig.3  Surface microscopic morphologies of SPHC hot rolled steel with (a, b) and without (c, d) oxide scales after exposure for 15 d (a, c) and 180 d (b, d)
Fig.4  Cross-sectional morphologies (a1, b1) and elemental line scannings (a2, b2, a3, b3) of SPHC hot rolled steel samples with (a1~a3) and without (b1~b3) oxide scales after exposure for 15 d
Fig.5  Cross sections of SPHC hot rolled steel samples with (a) and without (b) oxide scales after exposure for 180 d
Fig.6  XRD spectrum of the oxide scales of SPHC hot rolled steel
Fig.7  XRD spectra of SPHC hot rolled steel samples with (a) and without (b) oxide scales after exposure for 15 and 180 d
Fig.8  Polarization curves of SPHC hot rolled steel samples after 15 and 180 d exposure
Exposure time / dWith oxide scales sampleWithout oxide scales sample
Potential / mVCurrent density / μA·cm-2Potential / mVCurrent density / μA·cm-2
15-487.3129.03-544.0645.20
180-348.0816.41-360.0820.63
Table 1  Corrosion potential and current density of SPHC hot rolled steel after 15 and 180 d exposure
[1] GuR K, WangH, SongY Q. Effects of oxide scales on corrosion behavior of Q235 carbon steel [J]. Corros. Prot., 2014, 35: 52
[1] (谷荣坤, 王鸿, 宋义全. 氧化皮对Q235碳钢腐蚀行为的影响 [J]. 腐蚀与防护, 2014, 35: 52)
[2] HanJ K, YanH, HuangY, et al. Structural features of oxide scales on weathering steel and their influence on atmospheric corrosion [J]. Acta Metall. Sin., 2017, 53: 163
[2] (韩军科, 严红, 黄耀等. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响 [J]. 金属学报, 2017, 53: 163)
[3] ZhouX L, ZhouW, HuaX Z, et al. Influence of oxygen concentration in heating atmosphere on structure and corrosion resistance of oxide scales formed on hot rolled steel strip [J]. Trans. Mater. Heat Treat., 2010, 31(7): 134
[3] (周贤良, 周伟, 华小珍等. 加热气氛中氧浓度对热轧带钢氧化皮结构及耐蚀性的影响 [J]. 材料热处理学报, 2010, 31(7): 134)
[4] ZhouX L, ZhuM, HuaX Z, et al. Influence of different cooling methods on corrosion resistance of oxide scale structure of hot rolled strip [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 323
[4] (周贤良, 朱敏, 华小珍等. 不同冷却方式对热轧带钢氧化皮结构及其耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 323)
[5] SongL L, QiH B, WuY X, et al. The structure change and corrosion protectivity of the oxide scale on an SS400 hot-rolled steel plate [J]. Corros. Prot., 2009, 30: 903
[5] (宋璐璐, 齐慧滨, 吴毅雄等. SS400热轧碳钢氧化皮的结构改变与保护性 [J]. 腐蚀与防护, 2009, 30: 903)
[6] PérezF J, MartínezL, HierroM P, et al. Corrosion behaviour of different hot rolled steels [J]. Corros. Sci., 2006, 48: 472
[7] FuM H. Research on structure and corrosion resistance of oxide scale of hot-strip steel [D]. Nanchang: Nanchang Hangkong University, 2009
[7] (符明含.热轧带钢氧化皮结构及耐蚀性能研究 [D]. 南昌: 南昌航空大学, 2009)
[8] HeA H. The effect of oxide film on the electrochemical corrosion behaviors of hot rolled steel [D]. Qingdao: Ocean University of China, 2007
[8] (何爱花.热轧钢板氧化膜对基体碳钢腐蚀电化学行为的影响 [D]. 青岛: 中国海洋大学, 2007)
[9] DongC F, XueH B, LiX G, et al. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution [J]. Electrochim. Acta, 2009, 54: 4223
[10] ZhangH M, QiG T, DaiJ B, et al. Effect of high temperature oxide scales on corrosion of base steels [J]. Mater. Prot., 1995, 28(6): 24
[10] (张华民, 齐公台, 戴金彪等. 钢铁表面高温氧化皮对基体钢腐蚀的影响 [J]. 材料保护, 1995, 28(6): 24)
[11] ZhangH M, QiG T, QiuY B, et al. A study on galvanic corrosion of scale cinder carbon steel [J]. Oil Gas. Field Surf. Eng., 1995, 14(5): 32
[11] (张华民, 齐公台, 邱于斌等. 氧化皮─碳钢电偶腐蚀研究 [J]. 油田地面工程, 1995, 14(5): 32)
[12] HaoX C, LiX G, XiaoK, et al. Characterization of rust layers formed on Q235 steel exposed to atmosphere in Xisha islands [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1239
[12] (郝献超, 李晓刚, 肖葵等. Q235碳钢在西沙大气暴晒的锈层特征 [J]. 北京科技大学学报, 2009, 31: 1239)
[13] XiaoK, DongC F, LiX G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
[13] (肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53)
[14] MaY T, LiY, WangF H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
[15] AsamiK, KikuchiM. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2617
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[5] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[6] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[7] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[8] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[9] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[10] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[11] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[12] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[13] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
[14] Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[15] Qimeng CHEN,Junxi ZHANG,Xujie YUAN,Nianwei DAI. Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
No Suggested Reading articles found!