Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 338-344    DOI: 10.11902/1005.4537.2018.144
Current Issue | Archive | Adv Search |
Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel
WANG Biao,DU Nan(),ZHANG Hao,WANG Shuaixing,ZHAO Qing
National Defense Key Discipline Laboratory of Alloy Processing Scienceand Technology, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(4680KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The acceleration effect of the concentration of pitting corrosion products on the metastable pitting initiation and the stable pitting growth of 304 stainless steel was studied by changing the concentration of pitting products on the surface of 304 stainless steel compulsively. There are three characteristic indexes of metastable pitting initiation process with the decreasing concentration of pitting products, namely the increase of pitting incubation period, the reduce of average peak current and average peak width, and the decrease of pits number. The volume and the transverse growth rate of pits decreases. With the decreasing ratio of pits width to depth and the growth of pits, the concentration of pitting products in pits increases again and the corrosion rate increases. The concentration of pitting products is certainly the key factor for metastable pitting initiation and steady pitting growth.

Key words:  metastable pitting      stable pitting      stir      potentiostatic polarization     
Received:  08 October 2018     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China(51561024)
Corresponding Authors:  Nan DU     E-mail:  d_nan@sina.com

Cite this article: 

WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 338-344.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.144     OR     https://www.jcscp.org/EN/Y2019/V39/I4/338

Fig.1  Schematic diagram of the experiment device
Fig.2  Curves of transient current vs time for metastable pits of 304 stainless steel in 3.5%NaCl solution at the stirring rates of 0 r/min (a), 100 r/min (b), 300 r/min (c) and 500 r/min (d)
Fig.3  Relationships between average peak current (a), average peak width (b), number of pits (c) and pitting incubationperiod (d) of metastable pits and stirring rate
Fig.4  Curves of dissolution current vs time for single pit in 3.5%NaCl solution at different stirring rates
Fig.5  Evolutions of the volume of a single stable pit of 304 stainless steel in 3.5%NaCl solution at different stirring rates
Stirring rate r / minD / μmd / μmH / μmV / μm3DHdH
01751031051.61×1061.670.98
10013385908.36×1051.470.94
30012579877.45×1051.430.90
5008962753.54×1051.180.82
Table 1  Geometric parameters of a single pit after polarization at different stirring rates
Fig.6  Evolutions of mouth diameter of a single stable pit of 304 stainless steel in 3.5%NaCl solution at different stirring rates
Fig.7  Images of surface topography and 3D reconstruction of a single stable pit at the stirring rates of 0 r/min (a), 100 r/min (b), 300 r/min (c) and 500 r/min (d)
[1] YeC, DuN, ZhaoQ, et al. Progress in research of pitting corrosion behavior and research methods of stainless steels [J]. Corros. Prot., 2014, 35: 271
[1] (叶超, 杜楠, 赵晴等. 不锈钢点蚀行为及研究方法的进展 [J]. 腐蚀与防护, 2014, 35: 271)
[2] LiuD X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 78
[2] 刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 78)
[3] LiuZ Y, LiX G, DuC W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
[4] BursteinG T, LiuC, SoutoR M, et al. Origins of pitting corrosion [J]. Corros. Eng., Sci. Technol., 2004, 39: 25
[5] LiX G, ZhangD W, LiuZ Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
[6] FengZ C, ChengX Q, DongC F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
[7] LiuZ Y, LiX G, DuC W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
[8] FrankelG S, StockertL, HunkelerF, et al. Metastable pitting of stainless steel [J]. Corrosion, 1987, 43: 429
[9] WangM F, LiX G, DuN, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
[10] AshleyG W, BursteinG T. Initial stages of the anodic oxidation of iron in chloride solutions [J]. Corros. Sci., 2012, 47: 908
[11] VetterK J, StrehblowH H,In StaehleR W. et alEds. Localized Corrosion [M]. Houston: NACE, 1974: 240
[12] WilliamsD E, WestcottC, FleischmannM. Stochastic Models of pitting corrosion of stainless-Steels 1: Modeling of the initiation and growth of pits at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1796
[13] LiuX J, SpikesH, WongJ S S. In situ pH responsive fluorescent probing of localized iron corrosion [J]. Corros. Sci., 2014, 87: 118
[14] ZuoY, WangH T, XiongJ P. The aspect ratio of surface grooves and metastable Pitting of stainless steel [J]. Corros. Sci., 2002, 44: 25
[15] BursteinG T, PistoriusP C, MattinS P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
[16] HuangS X, DuN, ZhaoQ, et al. Fe3+ hydrolysis and its impact on the pitting behavior of 304 stainless steel [J]. Corros. Prot., 2016, 37: 453
[16] (黄世新, 杜楠, 赵晴等. Fe3+水解及其对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 453)
[17] ZhangS Q. The study of pitting behavior for 304 stainless steel in 3.5%NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2018
[17] (张思齐. 304不锈钢在3.5%NaCl溶液中的点蚀行为研究 [D]. 南昌: 南昌航空大学, 2018)
[18] ZuoY, WangH T. Electrochemical study on metastable pitting of metals and alloys [J]. Corros. Sci. Prot. Technol., 1999, 11: 44
[18] (左禹, 王海涛. 金属亚稳态孔蚀行为的电化学研究 [J]. 腐蚀科学与防护技术, 1999, 11: 44)
[19] TianW M. The study of pitting dynamics for 304 stainless steel in 3.5%NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2013
[19] (田文明. 304不锈钢在3.5%NaCl溶液中的点蚀动力学研究 [D]. 南昌: 南昌航空大学, 2013)
[20] XiaoJ. The electrochemical characters of metastable pitting of 316L stainless steel [D]. Beijing: Beijing University of Chemical Technology, 2001
[20] (肖娟. 316L不锈钢亚稳态孔蚀行为的电化学特征 [D]. 北京: 北京化工大学, 2001)
[21] RyanM P, WilliamD E, ChaterR J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[22] AiY J, DuN, ZhaoQ, et al. Effect of temperature on initiation of metastable pits and geometric features of stable pits for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 135
[22] (艾莹珺, 杜楠, 赵晴等. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 135)
[23] FangY R, FuC Y. Corrosion and corrosion inhibition of 304 stainless steel in acidic FeCl3 solution with applied inhibitor K2Cr2O7 and ultrasonic vibration [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 305
[23] (方玉荣, 付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 305)
[24] ErnstP, LaycockN J, MoayedM H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
[25] YinZ F, ZhaoW Z, TianW, et al. Pitting behavior on super 13Cr stainless steel in 3.5%NaCl solution in the presence of acetic acid [J]. J. Solid State Electrochem., 2009, 13: 1291
[26] AiY J, DuN, ZhaoQ, et al. Effect of gravity on pitting behavior of 304 stainless steel [J]. Corros. Prot., 2014, 35: 1182
[26] (艾莹珺, 杜楠, 赵晴等. 重力对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2014, 35: 1182)
[1] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[2] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[3] ZHANG Hua,SUN Datong,ZHANG He,ZHAO Yanhua,MA Fangfang,XU Keren. Progress in Corrosion Behavior of Friction Stir Welded Aluminum Alloy[J]. 中国腐蚀与防护学报, 2013, 33(3): 175-181.
[4] SHI Huiying,TANG Yumiung,ZUO Yu. Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions[J]. 中国腐蚀与防护学报, 2013, 33(1): 36-40.
[5] KANG Ju, DONG Chunlin, LUAN Guohong,HE Miao, FU Ruidong. CORROSION MECHANISM ON TOP SURFACE OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288.
[6] FU Ruidong, HE Miao, LUAN Guohong, DONG Chunlin,KANG Ju. CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
[7] Jian Peng Mao; Yuming Tang; Yu Zuo. The Electrochemical Characteristics of Pitting of X70 Pipeline Steel[J]. 中国腐蚀与防护学报, 2006, 26(2): 80-84 .
[8] Haitao Wang; Jingmao Zhao; Yu Zuo. THE EFFECTS OF SOME ANIONS ON METASTABLEPITTING OF 316L STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2002, 22(4): 202-206 .
[9] Haitao Wang; Yu Zuo; Jinping Xiong. EFFECT OF SURFACE ROUGHNESS ON METASTABLE PITTING BEHAVIOR OF STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2002, 22(3): 158-161 .
[10] Yu Zuo. INFLUENCE OF SOME ANIONS ON METASTABLE PITTING BEHAVIOR[J]. 中国腐蚀与防护学报, 1999, 19(1): 21-26 .
No Suggested Reading articles found!