Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (5): 374-378    
  研究报告 本期目录 | 过刊浏览 |
静水压力下Q235钢环氧涂层在3.5%NaCl溶液中的失效过程
刘浩宇1,梁小峰1,2,邵亚薇1,孟国哲1,张涛1,王福会1,3
1. 哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室 哈尔滨 150001
2. 浙江南都电源动力股份有限公司 杭州 310013
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
EFFECT OF HYDROSTATIC PRESSURE OF 3.5%NaCl SOLUTION ON THE CORROSION BEHAVIOR OF EPOXY COATING
LIU Haoyu1, LIANG Xiaofeng1,2, SHAO Yawei1, MENG Guozhe1,ZHANG Tao1, WANG Fuhui1,3
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. Narada Power Source Co.Ltd, Hangzhou310013
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1087 KB)  
摘要: 利用电化学阻抗谱(EIS)研究了一种适用于深海环境的重防护环氧涂料在3.5%NaCl溶液中常压以及3.5 MPa下的破坏机制,探讨了静水压力对涂< 层失效过程的影响。结果表明,静水压力加速了电解质溶液在涂层中的渗透,对涂层的失效过程有着明显的影响。与常压下相比,静水压力下涂层电阻更小,涂层的失效过程更快;涂层/金属界面的电荷转移电阻更小,界面处金属腐蚀反应更快,涂层下金属基体更容易发生腐蚀,涂层的防护性能变差。
关键词 涂料静水压力电化学阻抗谱失效过程    
Abstract:The effect of hydrostatic pressures of 3.5%NaCl solution on the corrosion resistance of the epoxy coating was studied by using electrochemical impedance spectroscopy (EIS). The results revealed that the hydrostatic pressure greatly affected the failure process of the coating. The diffusion rate of the electrolyte solution through the coatings was accelerated in the solution under high hydrostatic pressure. Compared with the case under atmospheric pressure, the coating resistance was reduced; the charge-transfer resistance was decreased, metal corrosion reaction was more accelerated; the protection properties of the coating was deteriorated.
Key wordsepoxy coating    hydrostatic pressure    EIS    degradation
收稿日期: 2009-03-30     
ZTFLH: 

TG174.46

 
基金资助:

国家自然科学基金项目(50771038)资助

通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: SHAO Yawei     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 刘浩宇,男,1985年生,硕士生,研究方向为材料腐蚀与防护

引用本文:

刘浩宇,梁小峰,邵亚薇,孟国哲,张涛,王福会. 静水压力下Q235钢环氧涂层在3.5%NaCl溶液中的失效过程[J]. 中国腐蚀与防护学报, 2010, 30(5): 374-378.
LIU Gao-Yu. EFFECT OF HYDROSTATIC PRESSURE OF 3.5%NaCl SOLUTION ON THE CORROSION BEHAVIOR OF EPOXY COATING. J Chin Soc Corr Pro, 2010, 30(5): 374-378.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I5/374

[1] GB5776-86, Corrosion test method of metallic materials routine exposure to surface sea water [S].     (GB5776-86,金属材料在表层海水中常规暴露腐蚀试验方法 [S].) [2] Hou B R. Corrosion and Protection in Oceans [M]. Beijing: Science Press, 1997     (侯保荣. 海洋腐蚀与防护 [M]. 北京:科学出版社,1997) [3] Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J].Mar. Sci., 2005, 29(7): 1-3     (许立坤,李文军,陈光章. 深海腐蚀试验技术 [J]. 海洋科学,2005, 29(7): 1-3) [4] Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot.,1998, 19(3): 99-104     (张鉴清,曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护,1998, 19(3):99-104) [5] Amirudin A, Thierry D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26(1): 1-28 [6] Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings [J]. J. Appl. Electrochem.,1995, 25(3): 187-191 [7] Destreri M D G, Vogelsnag J, Fedrizzi L, et al. Water up-take evaluation of new waterborne and high solid epoxy coatings. PartⅡ: electrochemical impedance spectroscopy [J].Prog. Org. Coat., 1999, 37(2): 69-81 [8] Zhang J T , Hu J M , Zhang J Q. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS [J].Prog. Org. Coat., 2004, 51(2): 145-151 [9] Westing van E P M, Ferrari G M, Wit de J H W. The determination of coating performance using electrochemical impedance spectroscopy [J]. Corros. Sci., 1994, 36(6): 957-977 [10] Deflorian F, Fedrizzi L, Rossi S, et al. Organic coating capacitance measurement by EIS: ideal and actual trends [J]. Electrochim. Acta, 1999, 44(22): 4243-4249 [11] Suay J J, Rodriguez M T, Razzaq K A, et al. The evaluation of anticorrosive automotive epoxy coatings by means of electrochemical impedance spectroscopy [J]. Prog. Org. Coat., 2003, 46(2): 121-129 [12] Mirabedini S M, Thompsonb G E, Moradian S, et al. Corrosion performance of powder coated aluminium using EIS [J]. Prog. Org. Coat., 2003, 46(2): 112-120 [13] Haruyama S, Asari S, Tsuru T. Corrosion protection by organic coatings [J]. J. Electrochem. Soc., 1987, 87(2): 197-201 [14] Haruyama S, Sudo S. Electrochemical impedance for a large structure in soil [J]. Electrochim. Acta, 1993, 38(14): 1857-1865
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[9] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[15] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.