中国腐蚀与防护学报, 2024, 44(4): 972-978 DOI: 10.11902/1005.4537.2023.310

研究报告

电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究

王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强,

华北电力大学能源动力与机械工程学院 北京 102206

Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures

WANG Bihui, LIU Ju, CUI Zhixiang, XIAO Bo, YANG Tianrang, ZHANG Naiqiang,

College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

通讯作者: 张乃强,E-mail:zhnq@ncepu.edu.cn,研究方向为金属高温腐蚀行为

收稿日期: 2023-09-27   修回日期: 2023-12-11  

Corresponding authors: ZHANG Naiqiang, E-mail:zhnq@ncepu.edu.cn

Received: 2023-09-27   Revised: 2023-12-11  

作者简介 About authors

王碧辉,女,1994年生,博士生

摘要

采用电泳沉积工艺在不同Cr含量钢表面制备了Mn1.5Co1.5O4尖晶石涂层,探究了温度对Mn1.5Co1.5O4/钢体系的长期稳定性和导电性能的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和4线法电阻(ASR)测试对样品进行表征。结果表明,两步烧结法得到了相对致密性的涂层。在800℃氧化1000 h 后,Mn1.5Co1.5O4/钢的氧化速率约为(1~3) × 10-14 g2·cm-4·s-1,随着氧化温度的降低,氧化速率常数下降1~2个数量级。SUS430钢凭借自身较低Cr含量,在Mn1.5Co1.5O4/SUS430样品中形成了更薄的含Cr氧化层。同时,氧化过程中钢中Fe向外扩散促进涂层致密性,最终Mn1.5Co1.5O4/SUS430获得了比Mn1.5Co1.5O4/Crofer22H更低的ASR值。

关键词: 固体氧化物燃料电池 ; 铁素体钢 ; 尖晶石涂层 ; 电泳沉积

Abstract

Spinel coatings Mn1.5Co1.5O4 on steels SUS430 and Crofer22H were prepared via electrophoretic deposition, aiming to improve their high-temperature oxidation resistance and electrical conductivity as SOFC interconnector. Afterwards, their oxidation behavior at 700-800oC and electrical conductivity after oxidation were characterized by means of intermittent weighing method, X-ray diffraction (XRD), scanning electron microscope (SEM) and 4-wire electrical resistance tester (ASR). The result showed that relatively dense coatings may be acquired by two-step sintering. The oxidation rate of Mn1.5Co1.5O4/SUS430 oxidized at 800oC for 1000 h is about (1-3) × 10-14 g2·cm-4·s-1, and the oxidation rate constant decreases by 1-2 orders of magnitude as the temperature decreases. Mn1.5Co1.5O4/SUS430 formed a thinner Cr-containing oxide scale due to its own low Cr content, at the same time, the Fe diffused outward from the substrate steel during the oxidation process to further promote the coating densification. Ultimately, after high temperature oxidation, the Mn1.5Co1.5O4/SUS430 showed ASR values lower than those of the Mn1.5Co1.5O4/Crofer22H.

Keywords: solid oxide fuel cell ; ferrite steel ; spinel coating ; electrophoretic deposition

PDF (8371KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王碧辉, 刘聚, 崔志翔, 肖博, 杨天让, 张乃强. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究. 中国腐蚀与防护学报[J], 2024, 44(4): 972-978 DOI:10.11902/1005.4537.2023.310

WANG Bihui, LIU Ju, CUI Zhixiang, XIAO Bo, YANG Tianrang, ZHANG Naiqiang. Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(4): 972-978 DOI:10.11902/1005.4537.2023.310

近年来,随着高离子电导率先进材料的发展,固体氧化物燃料电池(SOFC)的工作温度逐渐降低到600~800℃[1]。连接体作为SOFC中的关键组成部件,其主要功能是为相连接的单片电池提供电流交换,并分隔阳极与阴极两侧气体。因此,通常需要连接体材料要具有一定的抗氧化性,良好的导电性以及与SOFC其他部件匹配的热膨胀系数(TEC)。研究表明,铁素体钢凭借优越的机械强度和易加工等特点成为SOFC连接体最主要的候选材料[2, 3]。然而,SOFC电堆在长期运行过程中,铁素体钢表面易氧化形成数微米厚的高电阻的Cr2O3层,导致电堆的接触电阻增加。当Cr2O3层生长到一定厚度时,由于氧化层/钢界面上TEC失配,氧化层形成裂纹并发生剥落,最终导致连接体与相邻部件发生电接触失效[4]。此外,在阴极环境的高氧分压以及水蒸气环境下,Cr2O3层会挥发形成高价态的Cr蒸汽,这已被证明会降低SOFC阴极的性能[5]

解决以上问题的最有效方法是在连接体表面涂覆具有保护性的高导电涂层[6, 7]。(Mn,Co)3O4尖晶石由于高导电性和高抗氧化性被认为是SOFC连接体的理想涂层[8]。Molin等[9]研究表明(Mn,Co)3O4涂层能抵抗氧的向内扩散和Cr的向外扩散,在800℃下氧化5000 h后尖晶石涂层结构完整。然而,(Mn,Co)3O4尖晶石涂层仍在元素配比上存在一些问题,如不同标称成分的(Mn,Co)3O4尖晶石会表现出不同的电导率,例如MnCo2O4 (22 S·cm-1),Mn1.2Co1.8O4,Mn1.5Co1.5O4 (68 S·cm-1),Mn2CoO4 (21 S·cm-1)[9~11]。目前,MnCo2O4和Mn1.5Co1.5O4尖晶石涂层最受关注[7,12~14]。其中,Mn1.5Co1.5O4尖晶石在室温下呈现立方相MnCo2O4和四方相Mn2CoO4。在673 K以上,有一个从四方相到立方相的转变,这种现象可以获得高质量涂层而不产生因热变化引起的裂纹[15]。另一方面,Mn1.5Co1.5O4的热膨胀系数与连接体材料的匹配性能更好[16]。尖晶石涂层制备方法有很多,目前已经报道了几种成功的连接体涂层制备方法,包括丝网印刷、电泳沉积、电镀、磁控溅射等[17~20]。其中,电泳沉积是一种易于获得均匀涂层的工艺方法,它基于纳米粉末在电场中迁移最终通过高温烧结工艺形成致密涂层。它可以在短时间内形成均匀的涂层,而且不受样片表面结构限制。

本研究目的是采用电泳沉积法分别在SUS430钢和Crofer22H钢表面制备 Mn1.5Co1.5O4尖晶石涂层,通过烧结工艺获得具有保护性和导电性的致密涂层。随后,实验探究涂层/钢体系在700~800℃环境下的氧化特性。从氧化动力学、涂层及热生长氧化层的形成、涂层/钢体系面比电阻等方面,讨论 Mn1.5Co1.5O4/钢体系的氧化层的生长和导电机理。

1 实验方法

实验使用常用金属连接体材料SUS430钢和Crofer22H钢,标准成分如表1,采用线切割从2 mm厚的平板上切割出尺寸为10 mm × 15 mm × 2 mm的矩形样品。分别用800#、1000#和1500#的SiC砂纸对金属样品进行打磨,并用乙醇超声波清洗10 min,用游标卡尺测量金属样品的长、宽、厚,最后用精度为0.01 mg的电子天平进行称重。

表1   SUS430钢和Crofer22H钢的标准化学成分 (mass fraction / %)

Table 1  Nominal chemical compositions of SUS430 and Crofer22H steels

SteelFeCrMnSiTiNbWLa
SUS430Bal.160.440.59----
Crofer22HBal.230.450.250.10.51.90.07

新窗口打开| 下载CSV


本实验采用平均粒径0.36 μm市售的Mn1.5Co1.5O4纳米尖晶石粉末进行电泳沉积。电泳沉积装置由150 mL玻璃烧杯和三电极组成。在沉积过程中,对电极中间为待沉积的金属样品,各极板之间间距为10 mm。以无水乙醇作为分散剂,配置浓度为10 g/L的尖晶石粉末悬浮液,添加少量碘增强粉末荷电能力。经过超声震荡30 min确保颗粒均匀分散形成悬浮溶液。最终确定电泳沉积的电压和时间参数分别为45 V和25 s。电泳沉积后样品在室温下保持干燥。最后将干燥好的样品进行烧结处理,烧结工艺分为两步,分别在900℃的H2气氛和800℃的静态空气中烧结2 h。制备工艺的示意图如图1所示。涂层/钢样品在700~800℃的空气中共氧化1000 h。每200 h 取样并称重,以评估不同时刻下的氧化增重。

图1

图1   涂层制备方法示意图以及烧结后表面和截面形貌

Fig.1   Schematic diagram of the preparation of the coating, and surface and cross-sectional morphologies of the as-prepared coating after sintering


对氧化后的涂层/钢样品进行面积比电阻(ASR)测量:首先通过丝网印刷在样品的两侧涂覆5 mm × 10 mm的银浆,然后在120℃下热处理干燥1 h。根据以下公式计算面积比电阻:ASR = RA1/2,其中,R为测量电阻(Ω),A1为银浆触点表面积(cm2)。使用Quattro-S (Thermo Fisher Scientific, USA)扫描电镜(SEM)观测氧化层表面和截面形貌,使用能量色散X射线能谱仪(EDS, EDAX, USA)对氧化物元素进行分析。使用X射线衍射(XRD, D8 ADVANCE)对氧化物物相进行表征,测试采用Cu靶,扫描速率6°/min,扫描范围10°~90°。

2 结果与讨论

2.1 未涂层钢与 Mn1.5Co1.5O4 涂层/钢样品氧化增重分析

未涂层钢与涂层/钢样品在700、750和800℃空气中氧化时的质量变化如图2所示。根据Wagner氧化动力学理论,铁素体钢高温氧化动力学可以用下式表示[21]:

ΔW/A2n=knt

图2

图2   Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H两种试样在不同温度下的氧化增重曲线

Fig.2   Mass gain curves of Mn1.5Co1.5O4/SUS430 (a) and Mn1.5Co1.5O4/Crofer22H (b) samples during oxidation in air at different temperatures


式中,ΔW/A2是单位面积的氧化增重(mg/cm2),kn氧化速率常数(mg/(cm2·h)),n是氧化时间指数,t是氧化时间(h)。对于Mn1.5Co1.5O4/SUS430钢样品,随着环境温度升高时间指数逐渐偏离抛物线规律,这与高温环境中离子的扩散速率不同有关。随着氧化温度的升高,氧化速率常数呈现指数级增加。但在800℃环境下,Mn1.5Co1.5O4/钢的氧化速率常数为(1~3) × 10-14 g2·cm-4·s-1,仍远小于基体的氧化速率常数[22]。对于不同钢,Mn1.5Co1.5O4/SUS430钢的抗氧化性能更优异。

2.2 Mn1.5Co1.5O4/ 钢在不同温度下的表面形貌及氧化物物相

图3为Mn1.5Co1.5O4/钢试样在不同温度下氧化200 h以及1000 h后的表面形貌及XRD物相分析。Mn1.5Co1.5O4/SUS430钢表面形成了非常致密的尖晶石氧化物。随着氧化时间的延长,氧化物晶粒尺寸增大,尤其是800℃时这种增大趋势最为明显,从200 h的1.3 μm增大到1000 h的2.3 μm。氧化物晶粒的快速增长是导致氧化增重的主要原因。对于 Mn1.5Co1.5O4/Crofer22H钢,表面氧化物呈现出均匀的细晶粒状态,表面出现因颗粒烧结发生团聚后形成的沟壑。这些沟壑是环境中O2向内扩散的主要路径。随着氧化时间延长到1000 h,高温促使氧化物晶粒迅速增长并在表面形成了致密涂层。相对的,由于温度降低,700和750℃条件下没有形成致密氧化层。随后通过EDS分别对样品表面氧化层元素检测表明,所有的Mn1.5Co1.5O4/SUS430样品表面均检测到1%~3%(原子分数)Fe。这与XRD检测到的(Mn,Co,Fe)3O4尖晶石相一致。然而,在Mn1.5Co1.5O4/Crofer22H样品表面却仅检测到Mn和Co,根据EDS和XRD物相分析,表面形成的氧化物为(Mn,Co)3O4尖晶石相。因此可以推断, Mn1.5Co1.5O4/SUS430表面形成致密涂层的原因与Fe元素向外扩散和扩散Fe与外层(Mn,Co)3O4尖晶石发生的反应有关。

图3

图3   Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H试样在不同温度下氧化200 h以及1000 h后的表面形貌和XRD谱

Fig.3   Surface morphologies (a-f, h-m) and XRD patterns (g, n) of SUS430 (a-g) and Crofer22H (h-n) steels with Mn1.5Co1.5O4 coating after oxidation for 200 h and 1000 h at 800oC (a, b, h, i), 750oC (c, d, j, k) and 700oC (e, f, l, m)


2.3 Mn1.5Co1.5O4/ 钢在不同温度下的截面形貌

图4为不同温度下Mn1.5Co1.5O4/钢在氧化1000 h后截面形貌。从截面形貌中可以明显的观察到800℃形成的涂层致密性优于700和750℃形成的涂层。将两种涂层/钢进行对比可以看出,Mn1.5Co1.5O4/SUS430钢涂层的致密性明显高于Mn1.5Co1.5O4/Crofer22H钢。根据EDS线扫结果,Mn1.5Co1.5O4/钢氧化后形成了明显的双结构氧化层,即靠近基体的致密的热生长的Cr2O3层以及外侧含有闭合/开放孔洞的MnCo尖晶石氧化层。MnCo涂层厚度约为9~10 μm,随着温度的升高Cr氧化层厚度减小。这主要是由于温度升高,会加速表面连续的Cr2O3层的形成,从而阻止钢中的Fe、Cr向外扩散。此外,无论所形成的涂层是否致密,在所有样品外侧均没有检测到Cr向外扩散的信号,说明电泳沉积制备尖晶石涂层起到了抑制Cr向外扩散的作用。

图4

图4   Mn1.5Co1.5O4/SUS430和Mn1.5Co1.5O4/Crofer22H两种试样在不同温度下氧化1000 h后的截面形貌及元素分布图(图中黄线标记为含Cr氧化层厚度)

Fig.4   Cross-sectional morphologies and elemental line of Mn1.5Co1.5O4/SUS430 (a-c) and Mn1.5Co1.5O4/Crofer22H (d-f) after oxidation for 1000 h at 800oC (a, d), 750oC (b, e) and 700oC (c, f) (the thicknesses of Cr-containing oxide layers are shown in the insets)


2.4 Mn1.5Co1.5O4/ 钢氧化后面积比电阻分析

为了评估涂层Mn1.5Co1.5O4/钢体系的导电性能,采用4线法测量面积比电阻, Mn1.5Co1.5O4/钢样品的ASR包含基体电阻和涂层电阻,由于基体电阻远远低于涂层电阻,因此可以忽略。图5为Mn1.5Co1.5O4/钢体系的ASR值与测试温度之间的关系,ASR值随着温度升高而降低,表现出了典型的半导体特性。 Mn1.5Co1.5O4/SUS430在800℃所测得的电阻明显小于Mn1.5Co1.5O4/Crofer22H。这与形成的含Cr氧化层厚度有关。两种钢涂层的ASR值不超过0.1 Ω·cm2,这是连接体涂层可接受的范围[23]。lg(ASR/T)与1/T成线性比例,符合Arrhenius方程如 式(2):

ASR/T=A3exp(Ea/KT)

图5

图5   Mn1.5Co1.5O4/钢在800℃氧化200 h以及1000 h后在不同温度下的面比电阻

Fig.5   ASR values of Mn1.5Co1.5O4/steels at different temperatures after oxidation at 800oC for 200 and 1000 h


式中,A3为常数,Ea表示活化能,K是Boltzmann常数。氧化1000 h后,Mn1.5Co1.5O4/钢的活化能为0.55 eV。不同涂层钢体系中活化能的差异与氧化层厚度及元素之间相互扩散有关。电阻活化能越低,电导率越高[24]

2.5 Mn1.5Co1.5O4/ 钢氧化及导电机理

Mn1.5Co1.5O4/钢经过高温氧化后,涂层厚度为9~10 μm。一般来说涂层厚度对氧化速率影响不大[25]。涂层/钢的氧化层生长机制与涂层与氧化层中的阳离子互扩散以及环境中O2-向内扩散有关。如图6所示,涂层表面存在的沟壑为氧向内扩散提供快速通道,加速氧化层生长。涂层与钢基体之间的阳离子的相互扩散过程非常复杂。氧化初期,基体内部的Fe和Cr向钢/氧化层界面扩散,由于Cr与氧的亲和性大于Fe,因此Cr2O3优先于Fe氧化物成核随后横向生长。当Cr2O3没能完全覆盖表面,钢中部分Fe会向外扩散到涂层中并发生反应。由于Fe离子半径大于Co,Fe与MnCo尖晶石反应导致涂层体积膨胀致密性增加[26]

图6

图6   Mn1.5Co1.5O4/钢试样氧化过程中元素扩散示意图

Fig.6   Schematic illustration of diffusion process of main elements for Mn1.5Co1.5O4 coated steels during oxidation


随着氧化时间的延续,基体中的Fe、Cr、Mn不断向外扩散,同时涂层中Co与Mn向内扩散[27]。导致涂层与Cr2O3层界面形成(Mn, Co, Fe, Cr)3O4反应层。反应层的形成起到了抑制Cr向外扩散的作用[28]。然而,Wang等[16]报道了不同成分(Mn,Co,Cr)3O4的电导率值,表明在MnCo尖晶石结构中加入Cr会降低电导率。由于Cr2O3是一种高电阻氧化层(Cr2O3 电导率为0.006~0.16 S·cm-1),因此MnCo/钢体系中含Cr氧化层是SOFC实现长期高导电耐久性的关键。对于Crofer22H钢,因其自身较高的Cr含量,使得存在足够的向外扩散的Cr通量。因此所形成的反应层的厚度要大于Mn1.5Co1.5O4/SUS430钢。当涂层致密性下降,氧向涂层与反应层界面的扩散速率增大,导致反应层的厚度增加。

尖晶石氧化物的导电机理通常被认为是八面体位置不同价态元素之间电子跳跃导电的。对于(Mn,Co)3O4尖晶石,其阳离子分布可以表示为Co2+[Co3+Co2+Mn3+Mn4+]O4[15]。根据八面体择位能[29],当Cr扩散到MnCo尖晶石中,具有强烈的占据八面体位倾向[30],而Cr在八面体位不存在变价,因此会导致电阻升高。因此,尽管反应层的形成在抑制Cr挥发是有益的,但这是以牺牲涂层导电性为代价的。所以控制含Cr氧化层的形成是提高涂层/钢导电性能的手段之一。

3 结论

本文针对不同钢采用电泳沉积工艺制备 Mn1.5Co1.5O4尖晶石涂层,随后开展了700~800℃空气环境下1000 h的氧化实验。从氧化动力学、面积比电阻以及涂层/钢之间相互作用的角度,评估了电泳沉积工艺方法在不同钢表面的适用性。研究表明,Mn1.5Co1.5O4/SUS430钢的抗氧化性和导电性均优于Mn1.5Co1.5O4/Crofer22H钢。其中Mn1.5Co1.5O4/SUS430样品表面形成的高度致密氧化层与钢中Fe向外扩散并形成(Mn,Co,Fe)3O4有关。钢中Fe向外扩散促进涂层致密性,缓解环境中的氧向内扩散,从而提升了抗氧化性能。然而,Mn1.5Co1.5O4/Crofer22H在基体与涂层之间形成的3~4 μm含Cr氧化层虽有助于减缓钢中Fe向外扩散,但形成过厚的含Cr氧化层增加了整个体系的电阻。因此,对于电泳沉积工艺所制备的Mn1.5Co1.5O4涂层在SUS430钢表面表现出更好的高温性能。

参考文献

Vinchhi P, Khandla M, Chaudhary K, et al.

Recent advances on electrolyte materials for SOFC: A review

[J]. Inorg. Chem. Commun., 2023, 152: 110724

[本文引用: 1]

Hassan M A, Mamat O B, Mehdi M.

Review: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells

[J]. Int. J. Hydrogen Energy, 2020, 45: 25191

[本文引用: 1]

Fergus J W.

Metallic interconnects for solid oxide fuel cells

[J]. Mater. Sci. Eng., 2005, 397A: 271

[本文引用: 1]

Zhu W Z, Deevi S C.

Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance

[J]. Mater. Res. Bull., 2003, 38: 957

[本文引用: 1]

Fergus J W.

Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells

[J]. Int. J. Hydrogen Energy, 2007, 32: 3664

[本文引用: 1]

Wu S J, Chen L, Liu J L, et al.

Research progress of Mn-Co spinel coating in interconnect alloys of solid oxide fuel cells

[J]. J. Ceram., 2022, 43: 733

[本文引用: 1]

吴诗静, 陈 霖, 刘佳乐 .

Mn-Co基尖晶石涂层在固体氧化物燃料电池连接体合金中的研究进展

[J]. 陶瓷学报, 2022, 43: 733

[本文引用: 1]

Smeacetto F, De Miranda A, Polo S C, et al.

Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application

[J]. J. Power Sources, 2015, 280: 379

[本文引用: 2]

Wu J W, Gemmen R S, Manivannan A, et al.

Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests

[J]. Int. J. Hydrogen Energy, 2011, 36: 4525

[本文引用: 1]

Molin S, Sabato A G, Bindi M, et al.

Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects

[J]. J. Eur. Ceram. Soc., 2017, 37: 4781

[本文引用: 2]

Stanislowski M, Froitzheim J, Niewolak L, et al.

Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings

[J]. J. Power Sources, 2007, 164: 578

Talic B, Falk-Windisch H, Venkatachalam V, et al.

Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

[J]. J. Power Sources, 2017, 354: 57

[本文引用: 1]

Hu Y Z, Su Y T, Li C X, et al.

Dense Mn1.5Co1.5O4 coatings with excellent long-term stability and electrical performance under the SOFC cathode environment

[J]. Appl. Surf. Sci., 2020, 499: 143726

[本文引用: 1]

Bobruk M, Molin S, Chen M, et al.

Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

[J]. Mater. Lett., 2018, 213: 394

Tseng H P, Yung T Y, Liu C K, et al.

Oxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells

[J]. Int. J. Hydrogen Energy, 2020, 45: 12555

[本文引用: 1]

Bordeneuve H, Tenailleau C, Guillemet-Fritsch S, et al.

Structural variations and cation distributions in Mn3- x Co x O4 (0 ≤ x ≤ 3) dense ceramics using neutron diffraction data

[J]. Solid State Sci., 2010, 12: 379

[本文引用: 2]

Wang K L, Liu Y J, Fergus J W.

Interactions between SOFC interconnect coating materials and chromia

[J]. J. Am. Ceram. Soc., 2011, 94: 4490

[本文引用: 2]

Jia C, Wang Y H, Molin S, et al.

High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air

[J]. J. Alloy. Compd., 2019, 787: 1327

[本文引用: 1]

Zeng Y X, Wu J W, Baker A P, et al.

Magnetron-sputtered Mn/Co(40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applications

[J]. Int. J. Hydrogen Energy, 2014, 39: 16061

Zanchi E, Ignaczak J, Molin S, et al.

Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects

[J]. J. Eur. Ceram. Soc., 2022, 42: 3271

Zanchi E, Sabato A G, Molin S, et al.

Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition

[J]. Mater. Lett., 2021, 286: 129229

[本文引用: 1]

Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Elsevier, 2008

[本文引用: 1]

Wang B H, Li K Y, Liu J, et al.

Achieving high-temperature corrosion resistance and conductivity of SUS430 by xCr-MnCo dual-structured coating

[J]. Corros. Sci., 2023, 220: 111267

[本文引用: 1]

Sabato A G, Molin S, Javed H, et al.

In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition

[J]. Ceram. Int., 2019, 45: 19148

DOI      [本文引用: 1]

The Cu doping of the Mn-Co spinel is obtained "in-situ" by electrophoretic co-deposition of CuO and Mn1.5Co1.5O4 powders and subsequent two-step reactive sintering. Cu-doped Mn1.5Co1.5O4 coatings on Crofer22APU processed by electrophoretic co-deposition method are tested in terms of lon(g) term oxidation resistance and area specific resistance tests up to 3600 h. The introduction of Cu in the spinel lead to higher level of densification of coatings for all the considered aging periods at 800 degrees C and stabilizes the cubic phase of the Mn1.5Co1.5O4 spinel. Corrosion rate of the Cu-doped Mn1.5Co1.5O4 coated Crofer22APU is similar to 10x lower than for the uncoated Crofer22APU. The stabilization of the cubic phase due to Cu doping, which reduces the extent of the tetragonal-cubic phase transition and limits possible thermal stresses due to mismatch of coefficients of thermal expansion or volume changes, is reviewed and discussed by means of electrical conductivity measurements together with diffraction patterns and elemental analyses. These novel electrophoretic co-deposited Cu-doped MnCo spinel coatings represent an innovative approach to obtain coatings with higher density and have future applications in the view of reaching lower rates of Cr evaporation form the steel.

Cheng F P, Sun J C.

Fabrication of a double-layered Co-Mn-O spinel coating on stainless steel via the double glow plasma alloying process and preoxidation treatment as SOFC interconnect

[J]. Int. J. Hydrogen Energy, 2019, 44: 18415

[本文引用: 1]

Molin S, Jasinski P, Mikkelsen L, et al.

Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C

[J]. J. Power Sources, 2016, 336: 408

[本文引用: 1]

Grünwald N, Sebold D, Sohn Y J, et al.

Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells

[J]. J. Power Sources, 2017, 363: 185

[本文引用: 1]

Fang Y C, Wu C L, Duan X B, et al.

High-temperature oxidation process analysis of MnCo2O4 coating on Fe–21Cr alloy

[J]. Int. J. Hydrogen Energy, 2011, 36: 5611

[本文引用: 1]

Horita T, Kishimoto H, Yamaji K, et al.

Diffusion of oxygen in the scales of Fe–Cr alloy interconnects and oxide coating layer for solid oxide fuel cells

[J]. Solid State Ion., 2008, 179: 2216

[本文引用: 1]

Navrotsky A, Kleppa O J.

The thermodynamics of cation distributions in simple spinels

[J]. J. Inorg. Nucl. Chem., 1967, 29: 2701

[本文引用: 1]

Liu Y J, Fergus J W, Cruz C D.

Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides

[J]. J. Am. Ceram. Soc., 2013, 96: 1841

[本文引用: 1]

/