Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1755-1763    DOI: 10.11902/1005.4537.2025.059
Current Issue | Archive | Adv Search |
SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel
YANG Baoqi1, YAN Maocheng2(), SHI Xianbo2, GAO Bowen2
1 Hengyang Hualing Steel Pipe Corporation Limited, Hengyang 421099, China
2 National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YANG Baoqi, YAN Maocheng, SHI Xianbo, GAO Bowen. SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1755-1763.

Download:  HTML  PDF(10793KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of a microbial corrosion-resistant (MIC-resistant) pipeline steel induced by sulfate reducing bacteria (SRB) was investigated through morphology observation, composition analysis, microbial culture analysis and electrochemical testing. The results show that, in the SRB environment, the number of active bacteria adhered to the surface of MIC-resistant steel is significantly reduced, and accordingly the thickness of the biofilm decreases. The MIC-resistant steel effectively inhibits biofilm attachment and growth on its surface. The MIC-resistant steel exhibited higher open-circuit potential, lower corrosion current density, and higher charge transfer resistance. There are fewer corrosion products on the surface of the MIC-resistant steel, composed mainly of dense α-FeOOH scale, in the contrast, a loose Fe3O4 scale may emerge on the ordinary steel surface. The corrosion rate in mass loss of an ordinary steel is approximately 1.83 times that of the MIC-resistant steel. It follows that comprehensively optimizing the content of the three alloying elements Cu, Cr, and Ni, synergistic improvement in both anti-bacterial and anti-corrosion could be achieved for this novel steel.

Key words:  MIC resistant steel      pipeline steel      microbial corrosion      sulfate reducing bacteria      biofilm     
Received:  21 February 2025      32134.14.1005.4537.2025.059
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51471176)
Corresponding Authors:  YAN Maocheng, E-mail: yanmc@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.059     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1755

SampleCSiMnPSCuCrNiMoFe
Ordinary steel0.140.251.20.020.010.400.400.400.14Bal.
MIC resistant steel0.070.180.30.0070.0020.551.400.550.14Bal.
Table 1  Chemical compositions of two test steels (mass fraction / %)
Fig.1  Microstructures of ordinary steel (a) and MIC resistant steel (b)
Fig.2  SEM surface morphologies (a-d) and EDS analysis results (e, f) of MIC resistant steel (a, b, e) and ordinary steel (c, d, f) after 14 d immersion in SRB inoculated solution
Fig.3  Raman spectra of the surfaces of MIC resistant steel and ordinary steel after 14 d immersion in SRB inoculated solution
Fig.4  CLSM images of MIC resistant steel (a) and ordinary steel (b) after 7 d immersion in SRB inoculated solution
Fig.5  SEM surface morphologies of ordinary steel (a-c) and MIC resistant steel (d-f) after removal of corrosion products formed during 14 d immersion in SRB inoculated solution
Fig.6  Surface maximum pitting morphologies of MIC resistant steel (a) and ordinary steel (b) after 14 d immersion in SRB inoculation solution
Fig.7  Potentiodynamic polarization curves of MIC resistant steel and ordinary steel after 14 d immersion in SRB inoculation solution
Steelβa / mV·dec-1βc / mV·dec-1Icorr / μA·cm-2Ecorr / mVCorrosion rate / mm·a-1
Ordinary steel34610214.9-8880.173
MIC resistant steel24376.38.53-8470.0992
Table 2  Fitting results of potentiodynamic polarization curves of ordinary steel and MIC resistant steel in Fig.7
Fig.8  Nyquist (a, c) and Bode (b, d) plots of MIC resistant steel (a, b) and ordinary steel (c, d) after immersion in SRB inoculated solution for different time
Fig.9  Equivalent circuit model used to fit EIS data (Rs-solution resistance, Qbc-biofilm and corrosion product layer capacitance, Rbc-biofilm and corrosion product layer resistance, Qct-interface double-layer capacitance, Rct-metal surface charge transfer resistance)
SamplesTime / dRs / Ω·cm2Rbc / Ω·cm2Qbc / Ω-1·cm-2·s nRct / Ω·cm2Qct / Ω-1·cm-2·s n
Ordinary steel13.6480085.82 × 10-452.971.43 × 10-3
23.5291033.12 × 10-30.2581.73 × 10-2
43.6133113.79 × 10-34831.20 × 10-2
73.8746716.44 × 10-329304.01 × 10-3
103.8120456.39 × 10-331144.87 × 10-3
143.8710196.34 × 10-373396.29 × 10-3
MIC resistant steel13.560.115.09 × 10-42.31×1046.01 × 10-4
23.626922.02 × 10-327.916.14 × 10-3
43.4724.51.02 × 10-22693.70 × 10-3
73.558.263.71 × 10-31.66 × 1042.83 × 10-3
103.5938.23.23 × 10-31.37 × 1042.93 × 10-3
143.6536.33.52 × 10-35.66 × 1042.10 × 10-3
Table 3  Fitting results of EIS of two test steels in Fig.8
Fig.10  Variations of Rct + Rbc of MIC resistant steel and ordinary steel with immersion time in SRB inoculated solution
[1] Wang Y H, Li J, Liu H W, et al. Research progress of microbial corrosion of metallic materials in marine environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 577
(王宇晗, 李 俊, 刘恒维 等. 海洋环境中金属材料微生物腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 577)
[2] Zhang W Z, Feng S Q, Song X P, et al. Microbial corrosion of polymer flooding oil gathering/transportation pipeline [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1098
(张维智, 冯思乔, 宋霄鹏 等. 聚合物驱集输管道微生物腐蚀行为实验研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1098)
[3] Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: a new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
(杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385)
[4] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
(史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
[5] Khan M S, Shi X B, Yuan S F, et al. Study on microbiologically influenced corrosion of HSLA-65 steel [J]. J. Mater. Res. Technol., 2024, 32: 2244
[6] Lin G, Shen J C, Wang R M. Properties and application of antibacterial stainless steels [J]. Bao-Steel Technol., 2013(5): 43
(林 刚, 沈继程, 王如萌. 抗菌不锈钢的性能与应用 [J]. 宝钢技术, 2013(5): 43)
[7] Yan B C, Zeng Y P, Zhang N, et al. Microbiologically influenced corrosion of Cu-bearing steel welded joints for petroleum pipes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 479
(燕冰川, 曾云鹏, 张 宁 等. 石油管材用含Cu钢焊接接头的微生物腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 479)
[8] Liu Q J, Li P, Wu B H, et al. Copper alloying improves the microbiologically influenced corrosion resistance of pipeline steel [J]. Coatings, 2024, 14: 834
[9] Fan L, Sun Y M, Wang D, et al. Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough [J]. Corros. Sci., 2023, 223: 111421
[10] Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
(于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10)
[11] Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
(曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43)
[12] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
[13] Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid. Surf., 2021, 202B: 111701
[14] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
[15] Shi X T, Wang Y, Li H Y, et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy [J]. J. Alloy. Compd., 2020, 823: 153721
[16] Xu J X, Huang R Y, Chu Z H, et al. Corrosion behavior of high entropy alloy FeNiCoCrW0.2Al0.1 in sulfate-reducing bacteria containing solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 460
(许竞翔, 黄睿阳, 褚振华 等. FeNiCoCrW0.2Al0.1高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 460)
[17] Permeh S, Lau K, Duncan M. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers [J]. Bioelectrochemistry, 2021, 142: 107922
[18] Song D Z, Zou J T, Sun L X, et al. Enhanced the SRB corrosion resistance of 316L stainless steel via adjusting the addition of Cu and Ce elements [J]. Vacuum, 2024, 224: 113183
[19] Li M J, Nan L, Liang C Y, et al. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62: 139
[20] Kashmiri Z N, Mankar S A. Free radicals and oxidative stress in bacteria [J]. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3: 34
[21] O'gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? [J]. J. Hosp. Infect., 2012, 81: 217
[22] Ma Z, Liu R, Zhao Y, et al. Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science [J]. Mater. Technol., 2020, 35: 11
[23] Chen M, Yang L, Zhang L, et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys [J]. Mater. Sci. Eng., 2017, 75C: 906
[24] Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 8344
[25] Mahmoudi P, Akbarpour M R, Lakeh H B, et al. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Mater. Today Bio, 2022, 17: 100447
[26] Shi A Q, Zhu C S, Fu S, et al. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? [J]. Mater. Sci. Eng., 2020, 109C: 110548
[27] Nan L, Liu Y Q, Lü M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 3057
[28] Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper‐bearing titanium alloys against Staphylococcus aureus [J]. Adv. Healthc. Mater., 2016, 5: 557
[29] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
[30] Zhang X R, Yang C G, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference [J]. ACS Appl. Mater. Interfaces, 2020, 12: 361
[31] Farha M A, Verschoor C P, Bowdish D, et al. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus [J]. Chem. Biol., 2013, 20: 1168
[32] Maloney P C, Kashket E R, Wilson T H. A protonmotive force drives ATP synthesis in bacteria [J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 3896
[33] Cook G M, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development [J]. Adv. Microb. Physiol., 2014, 65: 1
[34] Fu S, Zhang Y, Yang Y, et al. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119: 75
[35] Xie Y C, Lu M, Cui S S, et al. Construction of a rough surface with submicron Ti2Cu particle on Ti-Cu alloy and its effect on the antibacterial properties and cell biocompatibility [J]. Metals, 2022, 12: 1008
[36] Sim J W, Kim J H, Park C H, et al. Effect of phase conditions on tensile and antibacterial properties of Ti-Cu alloys with Ti2Cu intermetallic compound [J]. J. Alloy. Compd., 2022, 926: 166823
[1] LI Yuqing, ZHANG Tiezhi, HUANG Xinglin, SUN Zhenmei, ZHANG Yi, YIN Yansheng. Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[2] DENG Yan, PENG Zipiao, LIU Yichao, ZHONG Xiankang. Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[3] GUO Zhangwei, YE Tingyu, GUO Na, LIU Tao. Effect of Mo Addition on Corrosion Behavior of EH36 Steel in Seawater Included With Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
[4] CHENG Luyao, XU Yanlei, LI Jiawei, SUN Chong, LIN Xueqiang, SUN Jianbo. Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2[J]. 中国腐蚀与防护学报, 2025, 45(5): 1351-1360.
[5] ZHANG Weizhi, FENG Siqiao, SONG Xiaopeng, LIU Aihua, TANG Dezhi, YAN Maocheng, HAN En-Hou. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[6] QI Peng, WANG Peng, ZENG Yan, ZHANG Dun. A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[7] WANG Huiling, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress on Hydrogen Permeation Behavior of Hydrogen-doped Natural Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[8] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[9] WAN Hongjiang, MING Hongliang, WANG Jianqiu, HAN En-Hou. Effect of Small Amount of O2 and CO on Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[10] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[11] ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[12] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[13] XU Jingxiang, HUANG Ruiyang, CHU Zhenhua, JIANG Quantong. Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[14] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[15] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
No Suggested Reading articles found!