|
|
|
| SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel |
YANG Baoqi1, YAN Maocheng2( ), SHI Xianbo2, GAO Bowen2 |
1 Hengyang Hualing Steel Pipe Corporation Limited, Hengyang 421099, China 2 National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
YANG Baoqi, YAN Maocheng, SHI Xianbo, GAO Bowen. SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1755-1763.
|
|
|
Abstract The corrosion behavior of a microbial corrosion-resistant (MIC-resistant) pipeline steel induced by sulfate reducing bacteria (SRB) was investigated through morphology observation, composition analysis, microbial culture analysis and electrochemical testing. The results show that, in the SRB environment, the number of active bacteria adhered to the surface of MIC-resistant steel is significantly reduced, and accordingly the thickness of the biofilm decreases. The MIC-resistant steel effectively inhibits biofilm attachment and growth on its surface. The MIC-resistant steel exhibited higher open-circuit potential, lower corrosion current density, and higher charge transfer resistance. There are fewer corrosion products on the surface of the MIC-resistant steel, composed mainly of dense α-FeOOH scale, in the contrast, a loose Fe3O4 scale may emerge on the ordinary steel surface. The corrosion rate in mass loss of an ordinary steel is approximately 1.83 times that of the MIC-resistant steel. It follows that comprehensively optimizing the content of the three alloying elements Cu, Cr, and Ni, synergistic improvement in both anti-bacterial and anti-corrosion could be achieved for this novel steel.
|
|
Received: 21 February 2025
32134.14.1005.4537.2025.059
|
|
|
| Fund: National Natural Science Foundation of China(51471176) |
Corresponding Authors:
YAN Maocheng, E-mail: yanmc@imr.ac.cn
|
| [1] |
Wang Y H, Li J, Liu H W, et al. Research progress of microbial corrosion of metallic materials in marine environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 577
|
|
(王宇晗, 李 俊, 刘恒维 等. 海洋环境中金属材料微生物腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 577)
|
| [2] |
Zhang W Z, Feng S Q, Song X P, et al. Microbial corrosion of polymer flooding oil gathering/transportation pipeline [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1098
|
|
(张维智, 冯思乔, 宋霄鹏 等. 聚合物驱集输管道微生物腐蚀行为实验研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1098)
|
| [3] |
Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: a new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
|
|
(杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385)
|
| [4] |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
|
(史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
|
| [5] |
Khan M S, Shi X B, Yuan S F, et al. Study on microbiologically influenced corrosion of HSLA-65 steel [J]. J. Mater. Res. Technol., 2024, 32: 2244
|
| [6] |
Lin G, Shen J C, Wang R M. Properties and application of antibacterial stainless steels [J]. Bao-Steel Technol., 2013(5): 43
|
|
(林 刚, 沈继程, 王如萌. 抗菌不锈钢的性能与应用 [J]. 宝钢技术, 2013(5): 43)
|
| [7] |
Yan B C, Zeng Y P, Zhang N, et al. Microbiologically influenced corrosion of Cu-bearing steel welded joints for petroleum pipes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 479
|
|
(燕冰川, 曾云鹏, 张 宁 等. 石油管材用含Cu钢焊接接头的微生物腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 479)
|
| [8] |
Liu Q J, Li P, Wu B H, et al. Copper alloying improves the microbiologically influenced corrosion resistance of pipeline steel [J]. Coatings, 2024, 14: 834
|
| [9] |
Fan L, Sun Y M, Wang D, et al. Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough [J]. Corros. Sci., 2023, 223: 111421
|
| [10] |
Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
|
|
(于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10)
|
| [11] |
Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
|
|
(曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43)
|
| [12] |
Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
|
| [13] |
Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid. Surf., 2021, 202B: 111701
|
| [14] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
|
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
|
| [15] |
Shi X T, Wang Y, Li H Y, et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy [J]. J. Alloy. Compd., 2020, 823: 153721
|
| [16] |
Xu J X, Huang R Y, Chu Z H, et al. Corrosion behavior of high entropy alloy FeNiCoCrW0.2Al0.1 in sulfate-reducing bacteria containing solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 460
|
|
(许竞翔, 黄睿阳, 褚振华 等. FeNiCoCrW0.2Al0.1高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 460)
|
| [17] |
Permeh S, Lau K, Duncan M. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers [J]. Bioelectrochemistry, 2021, 142: 107922
|
| [18] |
Song D Z, Zou J T, Sun L X, et al. Enhanced the SRB corrosion resistance of 316L stainless steel via adjusting the addition of Cu and Ce elements [J]. Vacuum, 2024, 224: 113183
|
| [19] |
Li M J, Nan L, Liang C Y, et al. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62: 139
|
| [20] |
Kashmiri Z N, Mankar S A. Free radicals and oxidative stress in bacteria [J]. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3: 34
|
| [21] |
O'gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? [J]. J. Hosp. Infect., 2012, 81: 217
|
| [22] |
Ma Z, Liu R, Zhao Y, et al. Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science [J]. Mater. Technol., 2020, 35: 11
|
| [23] |
Chen M, Yang L, Zhang L, et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys [J]. Mater. Sci. Eng., 2017, 75C: 906
|
| [24] |
Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 8344
|
| [25] |
Mahmoudi P, Akbarpour M R, Lakeh H B, et al. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Mater. Today Bio, 2022, 17: 100447
|
| [26] |
Shi A Q, Zhu C S, Fu S, et al. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? [J]. Mater. Sci. Eng., 2020, 109C: 110548
|
| [27] |
Nan L, Liu Y Q, Lü M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 3057
|
| [28] |
Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper‐bearing titanium alloys against Staphylococcus aureus [J]. Adv. Healthc. Mater., 2016, 5: 557
|
| [29] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
|
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
|
| [30] |
Zhang X R, Yang C G, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference [J]. ACS Appl. Mater. Interfaces, 2020, 12: 361
|
| [31] |
Farha M A, Verschoor C P, Bowdish D, et al. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus [J]. Chem. Biol., 2013, 20: 1168
|
| [32] |
Maloney P C, Kashket E R, Wilson T H. A protonmotive force drives ATP synthesis in bacteria [J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 3896
|
| [33] |
Cook G M, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development [J]. Adv. Microb. Physiol., 2014, 65: 1
|
| [34] |
Fu S, Zhang Y, Yang Y, et al. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119: 75
|
| [35] |
Xie Y C, Lu M, Cui S S, et al. Construction of a rough surface with submicron Ti2Cu particle on Ti-Cu alloy and its effect on the antibacterial properties and cell biocompatibility [J]. Metals, 2022, 12: 1008
|
| [36] |
Sim J W, Kim J H, Park C H, et al. Effect of phase conditions on tensile and antibacterial properties of Ti-Cu alloys with Ti2Cu intermetallic compound [J]. J. Alloy. Compd., 2022, 926: 166823
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|