Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1175-1186    DOI: 10.11902/1005.4537.2024.382
Current Issue | Archive | Adv Search |
Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte
HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei()
School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
Cite this article: 

HE Jianghai, YANG Ziyu, LIU Qi, MA Zihua, HE Wei, CHEN Fei. Research Progress on Modification of Microarc Oxidation Coatings on Ti-alloy Surface by Adding Ceramic Particles to Electrolyte. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1175-1186.

Download:  HTML  PDF(8701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is known that modification with micro arc oxidation (MAO) technique, the physical defects such as porosities or pinholes may commonly exist in the formed coatings on the Ti-alloy surface, which seriously affects the relevant properties and the service life-time of Ti-alloy parts or facilities, in view of this problem, herein it summarizes the research progress on the addition of binary compounds in the electrolyte to modify the relevant properties of MAO coatings on Ti-alloy in terms of the resistance to abrasion, corrosion and high temperature oxidation, as well as the photocatalytic and antimicrobial properties. Furthermore, the future research direction and ideas to create MAO coatings of peculiar performance for Ti-alloy, the utilizing different binary compounds with various function and particle size, even multiple binary compounds etc. are proposed, hoping to provide reference and reference for future research on titanium alloys.

Key words:  microarc oxidation      Ti-alloy      defects      binary compounds      properties     
Received:  26 November 2024      32134.14.1005.4537.2024.382
ZTFLH:  TG174.45  
Fund: Natural Science Foundation of Beijing(2202017)
Corresponding Authors:  CHEN Fei, E-mail: chenfei@bipt.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.382     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1175

Fig.1  Surface and cross-sectional morphologies of MAO films formed on Ti-alloy in the electrolytes containing different contents of ZrO2 particles: (a) 0 g/L, (b) 0.25 g/L, (c) 0.5 g/L, (d) 0.75 g/L, (e) 1.00 g/L, (f) 1.25 g/L[36]
SubstratesParticlesSize of particlesEcorr without particles / VEcorr with particles / VIcorr without particlesA·cm-2Icorr with particlesA·cm-2Refs.
TC4ZrO20.5-1 μm-0.2237-2.4 × 10-9[36]
Ti6Al4VMoS2< 2 μm-0.3830.0389.6 × 10-84.2 × 10-9[46]
TC4SiC400 nm--9.1 × 10-54.1 × 10-6[47]
TC4TaC1 μm-0.220.121.1 × 10-62.7 × 10-8[48]
Ti6Al4VZrO2/TiO21 μm-0.4470.1131.5 × 10-75.7 × 10-8[49]
Ti6Al4VGO/HA-0.290.615.0 × 10-81.6 × 10-8[50]
Ti6Al4VAlN--0.7311-0.38176.9 × 10-62.8 × 10-9[51]
Table 1  Effects of binary compound particles added in the electrolytes on the corrosion resistances of MAO films of Ti-alloy in 3.5%NaCl solution
Fig.2  EIS and fitting curves of MAO coating formed in the electrolyte containing MoS2 particles in 3.5% (mass fraction) NaCl solution: (a, b) Nyquist plots, (c) Bode impedance plots, (d) Bode phase angle plots[46]
SubstratesParticlesDurometerFriction coefficientsRefs.
TC4ZrO2-0.35[35]
Ti6Al4VTaC965HV0.148[49]
TC11Er2O3(486.9 ± 11.8)HV0.5[54]
TC11Nd2O3-0.6[55]
Ti6Al4VSiC(443.5 ± 15.8)HV0.38[56]
TC4BN/ZrO2-0.45[57]
Ti6Al4VMoS2/TiO2(360 ± 15)HV0.49[58]
TB8BN-0.6[59]
TC4Al2O31261HV0.63[60]
TC4Cu2O-0.3[61]
TC4GO-0.36[62]
Table 2  Effects of additions of binary compound particles in the electrolytes on the hardnesses and friction coefficients of MAO coatings on Ti-alloy
Fig.3  Abrasion SEM morphology of the surface film layer of GO particles with different contents added to the electrolyte: (a, c) 0 g/L, (b, d) 5 g/L[64]
Fig.4  Mass gains and corresponding macroscopic morphologies of TC11 alloy without and with MAO treatments in the electrolytes containing different concentrations of Nd2O3 after oxidation at 800 ℃ for 50 h[55]
Fig.5  UV-Vis spectra of TiO2 and TiO2/Eu2O3 MAO films[66]
Fig.6  Photogenerated current intensities of TiO2 and TiO2/Eu2O3 MAO films[66]
Fig.7  Photocatalytic activities of TiO2 and TiO2/Eu2O3 MAO films[66]
[1] Huang P H, Wang Y H. Alkali separation-ammonium ferric sulfate titration method for determining titanium in titanium-vanadium alloys [J]. Gold, 2023, 44(7): 125
[2] Song B, An M Y, Wang H Y, et al. Effect of cooling method after solution on microstructure and mechanical properties of new near-β Ti alloy Ti-5321 [J]. J. Liaocheng Univ. (Nat. Sci. Ed.), 2024, 37(3): 53
宋 博, 安明宇, 王红阳 等. 固溶冷却方式对新型高强近β钛合金Ti-5321微观组织及力学性能的影响 [J]. 聊城大学学报(自然科学版), 2024, 37(3): 53
[3] Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging Stamp. Technol., 2023, 48: 241
[4] Guo J, Lin C G, Cai S, et al. Record-high superconductivity in niobium-titanium alloy [J]. Adv. Mater., 2019, 31: 1807240
[5] Yeung K W K, Chan R Y L, Lam K O, et al. In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation [J]. Surf. Coat. Technol., 2007, 202: 1247
[6] Xin G Q, Wu C Y, Cao H Y, et al. Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance [J]. Surf. Coat. Technol., 2020, 391: 125707
[7] Xue K, Tan P H, Zhao Z H, et al. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy [J]. J. Mater. Sci. Technol., 2023, 132: 179
[8] Xia Q X, Li X, Yao Z P, et al. Investigations on the thermal control properties and corrosion resistance of MAO coatings prepared on Mg-5Y-7Gd-1Nd-0.5Zr alloy [J]. Surf. Coat. Technol., 2021, 409: 126874
[9] Singh C, Tiwari S K, Singh R. Development of corrosion-resistant electroplating on AZ91 Mg alloy by employing air and water-stable eutectic based ionic liquid bath [J]. Surf. Coat. Technol., 2021, 428: 127881
[10] Meng X, Wang J L, Zhang J, et al. Electroplated super-hydrophobic Zn-Fe coating for corrosion protection on magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 3250
[11] Marzbanrad B, Razmpoosh M H, Toyserkani E, et al. Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075 [J]. J. Magnes. Alloy., 2021, 9: 1458
doi: 10.1016/j.jma.2021.03.009
[12] Palanisamy K, Gangolu S, Antony J M, et al. Effects of HVOF spray parameters on porosity and hardness of 316L SS coated Mg AZ80 alloy [J]. Surf. Coat. Technol., 2022, 448: 128898
[13] Liu Y P, Cheng X, Wang X Y, et al. Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair [J]. Mater. Sci. Eng., 2021, 131C: 112491
[14] Pereira G S, Ramirez O M P, Avila P R T, et al. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy [J]. Corros. Sci., 2022, 206: 110527
[15] Wang X H, Huang L Q, Niu L J, et al. The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition [J]. J. Alloy. Compd., 2015, 622: 440
[16] Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review [J]. J. Magnes. Alloy., 2020, 8: 799
doi: 10.1016/j.jma.2020.05.001
[17] Jiang L P, Cui X F, Jin G, et al. Synthesis and microstructure, properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding [J]. Appl. Surf. Sci., 2022, 575: 151645
[18] Gao B. Experiment research on laser cladding repairing technology based on multiple-cladding [D]. Shanghai: Shanghai Jiao Tong University, 2010
高 宾. 基于复合堆焊的激光熔覆修复技术的实验研究 [D]. 上海: 上海交通大学, 2010
[19] Fan X L, Li C Y, Wang Y B, et al. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49: 224
[20] Chaharmahali R, Fattah-Alhosseini A, Babaei K. Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review [J]. J. Magnes. Alloy., 2021, 9(1): 21
doi: 10.1016/j.jma.2020.07.004
[21] Rakoch A G, Monakhova E P, Khabibullina Z V, et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism [J]. J. Magnes. Alloy., 2020, 8: 587
doi: 10.1016/j.jma.2020.06.002
[22] Wang L S, Jiang J H, Liu H, et al. Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures [J]. J. Magnes. Alloy., 2020, 8: 1208
[23] Wang X, Yan H G, Hang R Q, et al. Enhanced anticorrosive and antibacterial performances of silver nanoparticles/polyethyleneimine/MAO composite coating on magnesium alloys [J]. J. Mater. Res. Technol., 2021, 11: 2354
doi: 10.1016/j.jmrt.2021.02.053
[24] Lin T Y. Regulation of interfacial gradient of bimodal organization of titanium alloys and the mechanism of its influence on strength and plasticity [D]. Guiyang: Guizhou University, 2024
林廷艺. 钛合金双态组织界面梯度调控及其对强塑性影响机制研究 [D]. 贵阳: 贵州大学, 2024
[25] Wu G L, Yen C E, Hsu W C, et al. Incorporation of cerium oxide nanoparticles into the micro-arc oxidation layer promotes bone formation and achieves structural integrity in magnesium orthopedic implants [J]. Acta Biomater., 2025, 191: 80
[26] Krishtal M M, Ivashin P V, Polunin A V. The effect of dispersity of silicon dioxide nanoparticles added to electrolyte on the composition and properties of oxide layers formed by plasma electrolytic oxidation on magnesium 9995A [J]. Mater. Lett., 2019, 241: 119
doi: 10.1016/j.matlet.2019.01.080
[27] Bai X. Study on the synergistic lubrication effect of micro arc oxidation coating on titanium alloy surface and lubricating oil additives [D]. Ji'nan: Qilu University of Technology, 2024
白 霄. 钛合金表面微弧氧化涂层与润滑油添加剂协同润滑作用的研究 [D]. 济南: 齐鲁工业大学, 2024
[28] Zhan Z W, Zhang Q, Liu X H, et al. Effect of CeO2 particles on growth behavior and wear/corrosion resistance of micro-arc oxidation coating on 7075 aluminum alloy [J]. Surf. Technol., 2024, 53: 17
詹中伟, 张 骐, 刘小辉 等. CeO2颗粒对7075铝合金微弧氧化膜生长行为及耐磨/耐蚀性能的影响 [J]. 表面技术, 2024, 53: 17
[29] Yang Y Q. Preparation and performance regulation of electroless plating polyalloy coatings on micro-arc oxidized titanium [D]. Qinhuangdao: Yanshan University, 2024
杨永强. 微弧氧化钛表面多元化学镀膜层制备与性能调控研究 [D]. 秦皇岛: 燕山大学, 2024
[30] Yang C C, Liu L, Liu C H, et al. Study on the interfacial cohesive performance of nano-SiO2 grafted basalt fiber with asphalt [J]. Chem. Ind. Eng. Progress, 2024, 15: 16
杨程程, 柳 力, 刘朝晖 等. 纳米SiO2接枝玄武岩纤维与沥青界面粘结性能研究 [J]. 化工进展, 2024, 15: 16
[31] Xiao J X. Structure and classification, phase behavior of cationic surfactants, toxicity, applications, and interactions with other surfactants and interactions with other surfactants and various macromolecules [J]. Chem. Daily Use Eng., 2024, 47(11): 1
肖进新. 阳离子表面活性剂的结构及分类、相行为、毒性、应用以及与其他表面活性剂和各类大分子的相互作用 [J]. 日用化学品工程, 2024, 47(11): 1
[32] Pu Z. Preparation process of MoS2/TiO2 micro-arc oxide film grown on the surface of TC4 titanium alloy [D]. Xi'an: Chang'an University, 2019
蒲 哲. TC4钛合金表面原位生长MoS2/TiO2微弧氧化膜层制备工艺研究 [D]. 西安: 长安大学, 2019
[33] An J H, Qi Y M, Peng Z J, et al. Preparation and corrosion resistance of MgF coating containing Si C nanoparticles on AZ31 magnesium alloy [J]. China Surf. Eng., 2020, 33(1): 24
安景花, 齐玉明, 彭振军 等. AZ31镁合金表面含纳米SiC氟化镁膜层的制备及耐腐蚀性能 [J]. 中国表面工程, 2020, 33(1): 24
[34] Yao Z P, Chen C J, Wang J K, et al. Preparation and phenol degradation performance of Fenton catalysts with iron oxide film layers on titanium alloy surface [J]. Chin. J. Inorg. Chem., 2017, 33: 1797
姚忠平, 陈昌举, 王建康 等. 钛合金表面铁氧化物膜层类Fenton催化剂制备及降解苯酚性能 [J]. 无机化学学报, 2017, 33: 1797
[35] Zhang Q, Li Y H, Liu X. Properties of ZrO2/TiO2 composite ceramic coating on TC4 titanium alloy [J]. Trans. Mater. Heat Treatment, 2014, 35(9): 199
张 勤, 李玉海, 刘 馨. TC4钛合金表面ZrO2/TiO2复合陶瓷膜的性能 [J]. 材料热处理学报, 2014, 35(9): 199
[36] Cao F, Lü K, Zhang Y P, et al. Study on corrosion resistance of micro arc oxidation coating on Ti5111 alloy filled with ZrO2 particles [J]. Hot Work. Technol., 2020, 49(8): 84
曹 飞, 吕 凯, 张雅萍 等. ZrO2颗粒填充Ti5111合金微弧氧化膜的耐蚀性研究 [J]. 热加工工艺, 2020, 49(8): 84
[37] Wang X J, Wang P, Liu Y, et al. Effect of adding HfO2 on the properties of micro-arc oxidation film on titanium alloy [J]. Rare Met.Mater. Eng., 2023, 52: 3452
王香洁, 王 平, 刘 毅 等. 添加HfO2对钛合金微弧氧化膜层特性的影响 [J]. 稀有金属材料与工程, 2023, 52: 3452
[38] Lü K, Zhang R F, Chen W D, et al. Effect of graphene oxide on wear and corrosion characteristics of micro arc oxidation coating on titanium alloy [J]. Rare Met. Mater. Eng., 2022, 51: 4103
吕 凯, 张瑞芳, 陈伟东 等. 氧化石墨烯对钛合金微弧氧化膜耐磨损与腐蚀性影响 [J]. 稀有金属材料与工程, 2022, 51: 4103
[39] Ma N, Huang J M, Su J, et al. Effects of MgO nanoparticles on corrosion and wear behavior of micro-arc oxide coatings formed on AZ31B magnesium alloy [J]. Mater. Rep., 2018, 32: 2768
马 妞, 黄佳木, 苏 俊 等. MgO纳米颗粒对AZ31B镁合金微弧氧化涂层耐磨和耐蚀性的影响 [J]. 材料导报, 2018, 32: 2768
[40] Wang X Y, Ju P F, Lu X P, et al. Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy [J]. Ceram. Int., 2022, 48: 3615
[41] Zhang Y, Xu B, Chen Z N, et al. Effect of graphene addition on the properties of micro of graphene addition on the properties of micro-arc oxidation coating on arc oxidation coating on AZ31B magnesium alloy [J]. Ordnance Mater. Sci. Eng., 2022, 45(6): 153
张 艳, 许 波, 陈志楠 等. 石墨烯添加剂对AZ31B镁合金微弧氧化膜层性能的影响 [J]. 兵器材料科学与工程, 2022, 45(6): 153
[42] Pezzato L, Angelini V, Brunelli K, et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 259
[43] Liang X B, Li X G, Zhang K, et al. Micro-arc oxidation coatings formed on VW75 Mg alloy with Al2O3 nano-additive [J]. Chin. J. Rare Met., 2021, 45: 812
梁锡炳, 李兴刚, 张 奎 等. 纳米Al2O3添加剂对VW75稀土镁合金微弧氧化膜层的影响 [J]. 稀有金属, 2021, 45: 812
[44] Daroonparvar M, Mat Yajid M A, Kumar Gupta R, et al. Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1571
[45] Huang K, Wang G M, Qing H W, et al. Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCu x NiTiZr0.75 high entropy alloy films [J]. Vacuum, 2022, 195: 110695
[46] Chen X W, Li M L, Zhang D F, et al. Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating [J]. Surf. Coat. Technol., 2022, 433: 128127
[47] Chang H, Guo X G, Wen L, et al. Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy [J]. J. Mater. Eng., 2019, 47(3): 109
doi: 10.11868/j.issn.1001-4381.2018.000766
常 海, 郭雪刚, 文 磊 等. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响 [J]. 材料工程, 2019, 47(3): 109
[48] Ding Z S, Gao W, Wei J P, et al. Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy [J]. Acta Phys. Sin., 2022, 71: 331
丁智松, 高 巍, 魏敬鹏 等. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响 [J]. 物理学报, 2022, 71: 331
[49] Wang R Y, He X J, Gao Y E, et al. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants [J]. Mater. Sci. Eng., 2017, 75C: 7
[50] Li M Z, Zhao Z C, Wu M B, et al. Fabrication and performance of GO/HA/MAO composite coating on titanium alloy surface [J]. China Surf. Eng., 2020, 33(2): 97
李明泽, 赵子聪, 吴敏宝 等. 钛合金表面GO/HA/MAO复合膜层的制备及其性能 [J]. 中国表面工程, 2020, 33(2): 97
[51] Han L P. Effect of ceramic particles on the structure and properties of MAO film of titanium alloy [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2018
韩林萍. 陶瓷颗粒对钛合金微弧氧化膜结构与性能的影响 [D]. 郑州: 华北水利水电大学, 2018
[52] Xie Y N. Preparation and properties of SiC particles reinforced micro-arc oxidation layer on titanium alloy [D]. Dalian: Dalian Maritime University, 2019
谢延楠. SiC复合钛合金微弧氧化膜的制备与研究 [D]. 大连: 大连海事大学, 2019
[53] Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
[54] Zhang Y L, Dong X Y, Zhai Z Y, et al. Microstructure and wear resistance of MAO coatings of TC4 alloy with different Er2O3 Doping amounts [J]. Chin. J. Rare Met., 2024, 48: 1120
张云龙, 董鑫焱, 翟梓棫 等. Er2O3微粒掺杂对TC4钛合金微弧氧化涂层组织和耐磨性的影响 [J]. 稀有金属, 2024, 48: 1120
[55] Cheng Z H, Yang W, Zhang Y, et al. Effect of Nano Nd2O3 on the wear resistance and high temperature oxidation resistance of micro-arc oxidation coating on TC11 titanium alloy [J]. Mater. Prot., 2023, 56(7): 38
程赵辉, 杨 巍, 张 勇 等. 纳米Nd2O3对TC11钛合金微弧氧化层耐磨性及高温抗氧化性能的影响 [J]. 材料保护, 2023, 56(7): 38
[56] Wang X, Yu X T. Effects of SiC content on the composite membrane structure and friction properties of Ti-6Al-4V alloy for internal combustion engine [J]. Mater. Sci. Eng. Powder Metall., 2020, 25: 458
王 雪, 于秀涛. SiC含量对内燃机用Ti-6Al-4V合金复合膜组织和摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2020, 25: 458
[57] Wang W. Study on the friction and wear performance of MAO BN、ZrO2 composite coating on TC4 Alloy [D]. Nanchang: Nanchang Aviation University, 2015
王 伟. TC4钛合金微弧氧化/ZrO2、BN复合膜摩擦磨损性能研究 [D]. 南昌: 南昌航空大学, 2015
[58] Wang J C, You X Q, Zheng Y C, et al. Research and development status of partichlate reinforced metal matrix composites [J]. Cement. Carbide, 2003, 20: 51
王基才, 尤显卿, 郑玉春 等. 颗粒增强金属基复合材料的研究现状及展望 [J]. 硬质合金, 2003, 20: 51
[59] Liu Y C, Sun Q S, Liu Z Y, et al. Effect of adding boron nitride on micro arc oxidation coatings and wear resistance of the TB8 titanium alloy [J]. J. Qingdao Technol. Univ., 2020, 41(6): 102
刘元才, 孙启胜, 刘志远 等. 氮化硼对TB8钛合金微弧氧化膜及其耐磨性的影响 [J]. 青岛理工大学学报, 2020, 41(6): 102
[60] Jiang D X, Fu Y, Zhang J W, et al. Preparation and properties of alumina ceramic film on Ti-alloy surface [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 469
姜冬雪, 付 颖, 张峻巍 等. 钛合金表面Al2O3陶瓷膜制备及性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 469
doi: 10.11902/1005.4537.2018.173
[61] Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36: 409
doi: 10.11901/1005.3093.2021.411
高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36: 409
[62] Chen Y N, Guo Z W, Yang Z H, et al. Study on self-sealing pore effect of GO/TiO2 coating controlled by graphene oxide [J]. Rare Met. Mater. Eng., 2021, 50: 3621
陈永楠, 郭紫薇, 杨泽慧 等. 氧化石墨烯调控GO/TiO2陶瓷膜层自封孔效应研究 [J]. 稀有金属材料与工程, 2021, 50: 3621
[63] Hu J, Zhao Y, Tao Y C, et al. Effect of neodymium oxide on properties of micro-arc oxidation coating formed on 2A12 aluminium alloy [J]. Mater. Prot., 2022, 55(3): 73
胡 杰, 赵 月, 陶业成 等. 氧化钕对2A12铝合金微弧氧化膜层性能的影响 [J]. 材料保护, 2022, 55(3): 73
[64] Wang C. Preparation of ZrO2/TiO2 micro-arc oxidation composite ceramic coatings on Ti6Al4V and study on high-temperature oxidation behavior [D]. Xi'an: Chang'an University, 2015
王 超. Ti6Al4V表面TiO2/ZrO2微弧氧化复合陶瓷层的制备及高温氧化行为研究 [D]. 西安: 长安大学, 2015
[65] Zhao B, Shen Y H, Zhou Y J, et al. Progress on preparation and application of carbon quantum dots/TiO2 composite photocatalysts [J]. Technol. Dev. Chem. Ind., 2024, 53(6): 47
赵 斌, 沈谊豪, 周雨洁 等. 碳量子点/TiO2复合光催化剂的制备和应用进展 [J]. 化工技术与开发, 2024, 53(6): 47
[66] Wang Y Q, Jiang X D, Pan C X, et al. “In situ” preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by micro-arc oxidation and its photo-catalytic property [J]. J. Alloy. Compd., 2012, 538: 16
[67] Akatsu T, Yamada Y, Hoshikawa Y, et al. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation [J]. Mater. Sci. Eng., 2013, 33C: 4871
[68] Zhao D, Lu Y H, Wang Z, et al. Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO Nanoparticles on Ti6Al4V [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 417
[69] Li Z J, Zhang F H, Meng L, et al. ZnO/Ag micro/nanospheres with enhanced photocatalytic and antibacterial properties synthesized by a novel continuous synthesis method [J]. RSC Adv., 2015, 5: 612
[1] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[3] ZHANG Shanshan, LIU Yuancai, XU Tiewei, YANG Fazhan. Effect of Build-up Direction and Annealing on Corrosion Properties of Selected Laser Melting Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[4] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[5] HE Aocheng, ZHOU Qiyan, XIAO Tang, QU Zhanqing, LU Xiangyu, CHEN Songgui, FENG Xingguo. Comparison of Comprehensive Properties of Several Solid-state Reference Electrodes for Concrete[J]. 中国腐蚀与防护学报, 2025, 45(3): 773-779.
[6] CHEN Siyu, WANG Jingyu, GAO Liqiang. Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[7] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[8] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[9] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[10] WU Jinyi, CHAI Ke, LI Xiaolin, SHANG Jin, LI Qiang, WU Yaohua. Effects of Surrounding Factors on Settlement of Balanus Reticulatus Cyprids in Artificial Seawaters[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.
[11] GUO Shiwen, WU Haozhi, DONG Shaohua, CHEN Lin, CHENG Frank. Simulation of Hydrogen Distribution in Pipeline with Double Corrosion Defects[J]. 中国腐蚀与防护学报, 2024, 44(2): 335-344.
[12] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[13] DING Kangkang, LIU Shaotong, GUO Weimin, MIAO Yichun, ZHANG Penghui, CHENG Wenhua, HOU Jian. Prediction for Corrosion Aging of Polyethylene in Marine Atmospheric Environment of Qingdao[J]. 中国腐蚀与防护学报, 2022, 42(6): 1070-1074.
[14] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[15] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
No Suggested Reading articles found!