|
|
Research Status and Progress of Laser Clad Coatings on 42CrMo Steel |
SUN Fanghong1, REN Yanjie2( ), SONG Wenqing3 |
1 College of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou 310023, China 2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 3 Huiyun Technology (Shenzhen) Co., Ltd., Shenzhen 518132, China |
|
Cite this article:
SUN Fanghong, REN Yanjie, SONG Wenqing. Research Status and Progress of Laser Clad Coatings on 42CrMo Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 849-858.
|
Abstract As a high-strength alloy steel, 42CrMo steel is extensively used in the fields of machinery manufacturing, automotive engineering, petrochemicals, and aerospace et al. due to its remarkable mechanical properties. Nevertheless, in order to cope with the harsher service environments, it is imperative to further enhance its wear resistance and corrosion resistance. This paper comprehensively reviews the research progress of laser cladding technology applied to 42CrMo steel at home and abroad. It examines the recent progress and existing problems in aspects such as the cladding materials, optimization of process parameters, microstructure and microhardness, wear resistance and wear mechanisms, corrosion resistance and anticorrosion mechanism of the clad coatings. Moreover, it looks forward to the development trend of laser cladding technology for the surface modification of 42CrMo steel, aiming to provide a theoretical basis and technical reference for enhancing the comprehensive performance of 42CrMo steel.
|
Received: 22 November 2024
32134.14.1005.4537.2024.378
|
|
Fund: National Natural Science Foundation of China(52171066);General Scientific Research Project of Zhejiang Provincial Department of Education(Y202352005) |
Corresponding Authors:
REN Yanjie, E-mail: yjren@zust.edu.cn
|
[1] |
Lu H F, Pan C Y, Qin E W, et al. Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface [J]. Heat Treat. Met., 2019, 44(12): 19
|
|
(陆海峰, 潘晨阳, 覃恩伟 等. 45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能 [J]. 金属热处理, 2019, 44(12): 19)
|
[2] |
Ding Q Q, Yin M, Ni Y J, et al. Research on roughness and microhardness of laser cladding coating on the inner wall of 42CrMo steel [J]. Appl. Laser, 2022, 42(4): 41
|
|
(丁倩倩, 殷 铭, 倪玉吉 等. 42CrMo钢管内壁激光熔覆层粗糙度及显微硬度研究 [J]. 应用激光, 2022, 42(4): 41)
|
[3] |
Zhang Z D, Wang D, Liu G L, et al. Surface modification of 42CrMo steels: a review from wear and corrosion resistance [J]. Coatings, 2024, 14: 337
|
[4] |
Xu H H. Study on the microstructure and properties of laser cladding Ni-based WC + CeO2 coatings on the surface of 42CrMo steel [D]. Qingdao: Qingdao University of Technology, 2021
|
|
(徐欢欢. 42CrMo钢表面激光熔覆Ni基WC + CeO2涂层组织与性能的研究 [D]. 青岛: 青岛理工大学, 2021)
|
[5] |
Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
|
|
(吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725)
doi: 10.11902/1005.4537.2023.160
|
[6] |
Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
|
|
(裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873)
doi: 10.11902/1005.4537.2021.249
|
[7] |
Liu H Q, Zhou W. Research progress of laser cladding materials [J]. Mod. Manuf. Technol. Equip., 2017, 53(11): 83
|
|
(刘海青, 周 伟. 激光熔覆材料的研究进展 [J]. 现代制造技术与装备, 2017, 53(11): 83)
|
[8] |
Zhu L N, Xu B S, Wang H D, et al. Microstructure and nanoindentation measurement of residual stress in Fe-based coating by laser cladding [J]. J. Mater. Sci., 2012, 47: 2122
|
[9] |
Zhao J, Gao Q W, Wang H Q, et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding [J]. J. Alloy. Compd., 2019, 785: 846
|
[10] |
Lyu Y Z, Sun Y F, Yang Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel [J]. Met. Mater. Int., 2016, 22: 311
|
[11] |
Liu S S, Chen H Y, Zhao X, et al. Corrosion behavior of Ni-based coating containing spherical tungsten carbides in hydrochloric acid solution [J]. J. Iron Steel Res. Int., 2019, 26: 191
|
[12] |
Wan L, Cheng M Y, Fu G Y, et al. Annular laser cladding of CuPb10Sn10 copper alloy for high-quality anti-friction coating on 42CrMo steel surface [J]. Opt. Laser Technol., 2023, 158: 108878
|
[13] |
Cheng M Y, Shi T, Wan L, et al. Performance regulation of annular laser cladding CuPb10Sn10 anti-friction coating microstructure [J]. Surf. Technol., 2023, 52(7): 336
|
|
(程梦颖, 石 拓, 万 乐 等. 环形束激光熔覆CuPb10Sn10减摩涂层组织性能调控 [J]. 表面技术, 2023, 52(7): 336)
|
[14] |
Luo L B. Microstructure and properties of wear resistant layer for 42CrMo steel pick with the laser cladding [D]. Taiyuan: Taiyuan University of Technology, 2023
|
|
(罗亮斌. 42CrMo钢截齿激光熔覆耐磨层组织及性能 [D]. 太原: 太原理工大学, 2023)
|
[15] |
Tan D Q, Yang X Q, He Q, et al. Impact-sliding wear properties of PVD CrN and WC/C coatings [J]. Surf. Eng., 2021, 37: 12
|
[16] |
Kuang S H, Zhou F, Liu W C, et al. Al2O3/MC particles reinforced MoFeCrTiWNb x high-entropy-alloy coatings prepared by laser cladding [J]. Surf. Eng., 2022, 38: 158
|
[17] |
Yuan S H, Li H L, Han C F, et al. FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding [J]. Mater. Sci. Technol., 2023, 39: 705
|
[18] |
Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
|
|
(巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
|
[19] |
Fu D M, Wang K M. Influence of scanning speed on forming of NiCrBSi composite coating on 42CrMo steel by laser cladding [J]. Mech. Engineer, 2017, (8): 97
|
|
(符定梅, 王开明. 扫描速度对42CrMo表面激光熔覆NiCrBSi熔覆层成形的影响 [J]. 机械工程师, 2017, (8): 97)
|
[20] |
Lu Q L, Wang J, Qi X X, et al. Preparation technology of laser clad Fe-based coating for shield sealing runway repair [J]. Heat Treat. Met., 2022, 47(1): 202
|
|
(卢庆亮, 王 静, 戚小霞 等. 面向盾构机密封跑道修复的激光熔覆Fe基涂层制备工艺 [J]. 金属热处理, 2022, 47(1): 202)
doi: 10.13251/j.issn.0254-6051.2022.01.034
|
[21] |
Cui C, Wu M P, Cheng W. Effect of laser power on corrosion resistance of 42CrMo cladding Stellite-6 coating [J]. Laser Optoelectron. Prog., 2019, 56: 241403
|
|
(崔 宸, 武美萍, 程 伟. 激光功率对42CrMo熔覆Stellite-6涂层耐腐蚀性能的影响 [J]. 激光与光电子学进展, 2019, 56: 241403)
|
[22] |
Xiao Z L, Li X F, He T Y, et al. Research and analysis on microstructure and properties of wear-resistant layer of laser cladding high-end pick [J]. Hot Work. Technol., 2025, 54(6): 99
|
|
(肖志玲, 李晓峰, 何天运 等. 激光熔覆高端截齿耐磨层组织和性能研究分析 [J]. 热加工工艺, 2025, 54(6): 99)
|
[23] |
Zhou Z J, Jiang F L, Yang F Z, et al. Eutectic behavior and wear and corrosion resistance mechanisms of FeCoNiCrNb0.5Mo0.25 high-entropy alloy laser cladding layer microstructure [J]. Chin. J. Lasers, 2023, 50: 0402011
|
|
(周子钧, 姜芙林, 杨发展 等. FeCoNiCrNb0.5Mo0.25高熵合金激光熔覆层组织的共晶化行为及耐磨耐蚀机理 [J]. 中国激光, 2023, 50: 0402011)
|
[24] |
Cui C. Study on the optimization of laser cladding technology for cobalt-based coatings on 42CrMo steel surface [D]. Wuxi: Jiangnan University, 2021
|
|
(崔 宸. 42CrMo钢表面激光熔覆制备钴基涂层的工艺优化研究 [D]. 无锡: 江南大学, 2021)
|
[25] |
Zhang H Q, Liu H, Liu Y, et al. Research status and analysis of Co-based composite coatings prepared by laser cladding [J]. Laser Optoelectron. Prog., 2023, 60: 0900004
|
|
(张好强, 刘 豪, 刘 印 等. 激光熔覆制备钴基复合涂层研究现状分析 [J]. 激光与光电子学进展, 2023, 60: 0900004)
|
[26] |
Wen J H, Ding Y C, Yang Z G, et al. Research status and prospect of laser surface modification technology [J]. MW Met. Form., 2022, (11): 10
|
|
(温家浩, 丁永春, 杨中桂 等. 激光表面改性技术研究现状与展望 [J]. 金属加工(热加工), 2022, (11): 10)
|
[27] |
Ding T, Zhang Y H, Li J J, et al. Research status and prospect of laser cladding technology on stainless steel surface [J]. Heat Treat. Met., 2022, 47(2): 205
doi: 10.13251/j.issn.0254-6051.2022.02.037
|
|
(丁 涛, 张云华, 李俊杰 等. 不锈钢表面激光熔覆技术研究现状与展望 [J]. 金属热处理, 2022, 47(2): 205)
|
[28] |
Farshidianfar M H, Khajepour A, Gerlich A. Real-time control of microstructure in laser additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 82: 1173
|
[29] |
Marzban J, Ghaseminejad P, Ahmadzadeh M H, et al. Experimental investigation and statistical optimization of laser surface cladding parameters [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1163
|
[30] |
Hu G F, Yang Y, Qi K, et al. Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters [J]. Trans. Indian Inst. Met., 2020, 73: 2623
|
[31] |
Liu J W. Laser melting of WC particle-reinforced cobalt-based alloy gradient coatings on 42CrMo steel [D]. Taiyuan: Taiyuan University of Technology, 2023
|
|
(刘家伟. 42CrMo钢激光熔覆WC颗粒增强钴基合金梯度涂层的研究 [D]. 太原: 太原理工大学, 2023)
|
[32] |
Jiang F, Yan L, Huang Y, et al. Review on magnetic field assisted machining technology [J]. J. Mech. Eng., 2016, 52(17): 1
doi: 10.3901/JME.2016.17.001
|
|
(姜 峰, 言 兰, 黄 阳 等. 磁场辅助加工的研究现状及其发展趋势 [J]. 机械工程学报, 2016, 52(17): 1)
|
[33] |
Gong J T, Shu L S, Wang J S, et al. Research status and development trend of laser cladding process optimization method [J]. Laser Optoelectron. Prog., 2023, 60: 1900003
|
|
(巩江涛, 舒林森, 王家胜 等. 激光熔覆工艺优化方法研究现状及发展趋势 [J]. 激光与光电子学进展, 2023, 60: 1900003)
|
[34] |
Qi K, Yang Y, Sun R, et al. Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo [J]. Mater. Lett., 2021, 282: 128893
|
[35] |
Qi K, Yang Y, Liang W X, et al. Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition [J]. Surf. Coat. Technol., 2021, 423: 127575
|
[36] |
Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding [J]. Opt. Laser Technol., 2021, 141: 107129
|
[37] |
Ju J, Zhou Y, Kang M D, et al. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller [J]. Materials, 2018, 11: 2061
|
[38] |
Cai Z H, Qin H, Liu J, et al. Research of microstructure and performance of laser cladding Fe-based medium manganese alloy [J]. Appl. Laser, 2018, 38: 726
|
|
(蔡志海, 秦 航, 柳 建 等. 中锰铁基合金激光熔覆层组织性能研究 [J]. 应用激光, 2018, 38: 726)
|
[39] |
Yang Z F, Zou Y, Shi S Q, et al. Optimization of SD-3 nickel‑based alloy coating by single channel laser cladding using orthogonal experimental method [J]. Trans. Indian Inst. Met., 2024, 77: 1509
|
[40] |
Zhang Z J, Li X M, Zhu C J, et al. Effect of B4C addition on morphology and properties of Stellite6 + B4C laser clad layers on 42CrMo steel surface [J]. Heat Treat. Met., 2024, 49(7): 200
|
|
(张泽疆, 李新梅, 朱春金 等. B4C添加量对42CrMo钢表面Stellite6 + B4C激光熔覆层形貌与性能的影响 [J]. 金属热处理, 2024, 49(7): 200)
|
[41] |
Yang K X, Sun W L, Xiao Q, et al. Study on hardness and wear resistance of laser cladding Fe06 + (TiC/Mo) composite coatings [J]. Laser Technol., 2023, 47: 393
|
|
(杨凯欣, 孙文磊, 肖 奇 等. 激光熔覆Fe06 + (TiC/Mo)复合涂层硬度及耐磨性能研究 [J]. 激光技术, 2023, 47: 393)
|
[42] |
Zhang X H, Chen C L, Li Y T, et al. Research on microstructure and properties of laser cladding stainless steel powders doped Ni-WC coatings on 42CrMo steel [J]. Hot Work. Technol., 2021, 50(16): 66
|
|
(张现虎, 陈成龙, 李远田 等. 42CrMo钢激光熔覆不锈钢粉掺杂Ni-WC涂层的组织及性能研究 [J]. 热加工工艺, 2021, 50(16): 66)
|
[43] |
Gu J, Li D Q, Wang K M. Study on microstructure and properties of laser coated Ni-based composite coating on 42CrMo steel [J]. Hot Work. Technol., 2019, 48(24): 111
|
|
(顾 建, 李冬青, 王开明. 42CrMo钢表面激光熔覆镍基复合熔覆层组织和性能的研究 [J]. 热加工工艺, 2019, 48(24): 111)
|
[44] |
Wang D S, Tian Z J. Microstructure and wear resistance of NiCrBSi/WC-Co composite coating by laser cladding [J]. Mater. Mech. Eng., 2019, 43(11): 16
doi: 10.11973/jxgccl201911005
|
|
(王东生, 田宗军. 激光熔覆NiCrBSi/WC-Co复合涂层的组织与耐磨性能 [J]. 机械工程材料, 2019, 43(11): 16)
doi: 10.11973/jxgccl201911005
|
[45] |
Xu H, Lu Y P, Zhang H, et al. Laser cladding in-situ nano-submicron TiC reinforced ultrafinegrained Fe-based composite layers on 42CrMo steel [J]. Int. J. Electrochem. Sci., 2019, 14: 9974
|
[46] |
Yu W K. Study on preparation and properties of laser cladding CoCrFeNi-X high entropy alloy coatings [D]. Wuhan: Huazhong University of Science and Technology, 2021
|
|
(余文康. 激光熔覆CoCrFeNi-X高熵合金涂层的制备与性能研究 [D]. 武汉: 华中科技大学, 2021)
|
[47] |
Niu H Y, Wang K M, Ma P F, et al. Investigation on the microstructure and wear resistance of laser coated Fe-based coating [J]. Appl. Laser, 2023, 43(12): 21
|
|
(牛海云, 王开明, 马鹏飞 等. 激光熔覆铁基涂层显微组织和摩擦磨损性能的研究 [J]. 应用激光, 2023, 43(12): 21)
|
[48] |
Han J T, Wu M P, Cui C. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel [J]. Heat Treat. Met., 2020, 45(11): 214
doi: 10.13251/j.issn.0254-6051.2020.11.041
|
|
(韩基泰, 武美萍, 崔 宸. 激光功率对42CrMo钢激光熔覆层组织和摩擦磨损性能的影响 [J]. 金属热处理, 2020, 45(11): 214)
doi: 10.13251/j.issn.0254-6051.2020.11.041
|
[49] |
Cui C, Wu M P, He R, et al. Effect of CeO2 addition on grain refinement and mechanical properties of Stellite-6 coating fabricated by laser cladding [J]. J. Therm. Spray Technol., 2022, 31: 2621
|
[50] |
Guo H R. Research on microstructure and properties of laser cladded high-WC content composite coatings on 42CrMo steel [D]. Harbin: Harbin Institute of Technology, 2023
|
|
(郭浩然. 42CrMo钢激光熔覆高WC含量复合涂层组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2023)
|
[51] |
Lin L L, Chen X, Du K P, et al. High temperature wear properties of laser cladding AlCoCrFeNi high entropy alloy coatings [J]. Therm. Spray Technol., 2024, 16(2): 81
|
|
(林丽丽, 陈 星, 杜开平 等. 激光熔覆AlCoCrFeNi高熵合金涂层的高温磨损性能 [J]. 热喷涂技术, 2024, 16(2): 81)
|
[52] |
Liu J S, Shi Y. Microstructure and wear behavior of laser-cladded Ni-based coatings decorated by graphite particles [J]. Surf. Coat. Technol., 2021, 412: 127044
|
[53] |
Liu X Y, Guo Z F, Lu Z W, et al. Tribological behavior of the wear-resistant and self-lubrication integrated interface structure with ordered micro-pits [J]. Surf. Coat. Technol., 2023, 454: 129159
|
[54] |
Xiao J P, Yang X F, Li W Y, et al. Wear resistance and corrosion resistance of laser cladding WC/Co06 coating on the piston rod of hydraulic damper [J]. Surf. Technol., 2023, 52(3): 217
|
|
(肖居鹏, 杨学锋, 李万洋 等. 液压阻尼器活塞杆激光熔覆WC/Co06涂层耐磨耐腐蚀性能 [J]. 表面技术, 2023, 52(3): 217)
|
[55] |
Ye J L, Feng Y Q, Li Z G, et al. Composition design, microstructures and properties of Fe‑based wear‑ and corrosion‑resistant coatings by laser cladding [J]. Chin. J. Lasers, 2023, 50: 1202210
|
|
(叶界梁, 冯悦峤, 李铸国 等. 激光熔覆耐磨耐蚀铁基涂层的设计与组织性能研究 [J]. 中国激光, 2023, 50: 1202210)
|
[56] |
Cui C, Wu M P, Miao X J, et al. The effect of laser energy density on the geometric characteristics, microstructure and corrosion resistance of Co-based coatings by laser cladding [J]. J. Mater. Res. Technol., 2021, 15: 2405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|