Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1025-1034    DOI: 10.11902/1005.4537.2024.302
Current Issue | Archive | Adv Search |
In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe
XIONG Qiyong1, JIANG Wanjuan2, ZENG Meiting1, XU Jinshan1, YI Yonggang1, LI Yanyan2, DONG Zehua2()
1 Research Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

XIONG Qiyong, JIANG Wanjuan, ZENG Meiting, XU Jinshan, YI Yonggang, LI Yanyan, DONG Zehua. In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1025-1034.

Download:  HTML  PDF(9706KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The internal and external corrosion protection of oil and gas pipelines mainly depends on highly corrosion-resistant coatings. However, it remains a challenge to assess the protective performance of existing coatings non-destructively. In this work, a double-electrode electrochemical impedance probe was designed to estimate the degradation of coatings. The lab tests show that the EIS measured by the double-electrode probe agrees well with that by conventional three-electrode cells. In addition, the |Z|0.01 Hz increases first and then becomes stable with the increasing distance between the two electrodes. Through the simulation of COMSOL electrostatic field, it shows that the coating impedance measured by the double-electrode probe is twice that by a single-electrode probe. Although, the coating degradation state can be revealed using either probe, but the use of double-electrode probe can avoid the troubles of requiring to find out the iron-related leaking spot emerged on the coating during field tests. Eventually, a portable impedance meter for in situ non-destructive monitoring of coating is designed based on the double-electrode probe. Through online evaluation of coating degradation state, the impedance meter may provide guidance for the determination of preventive maintenance cycle and maintenance area of degraded coatings for pipeline or large tank.

Key words:  epoxy coating      coating degradation      electrochemical impedance      non-destructive monitoring      electric field simulation     
Received:  18 September 2024      32134.14.1005.4537.2024.302
ZTFLH:  TG174  
Fund: Key Scientific Research Projects of Xinjiang Oilfield, SINOPEC(2023CDB292)
Corresponding Authors:  DONG Zehua, E-mail: zhdong@hust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.302     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1025

Fig.1  Schematic diagram for coating impedance tests: (a) single electrolytic cell, (b) double electrolytic cell
Fig.2  Bode plots of epoxy coating versus the duration of salt spray test: (a) two-component epoxy metal primer, (b) two-component epoxy metal primer + two-component polyurethane finish, (c) two-component epoxy metal primer + two-component polyurethane finish + polyurethane metal finish, (d) two-component epoxy metal primer + two-component polyurethane finish + polyurethane metal finish + two-component polyurethane varnish
Fig.3  Equivalent circuits (EC) for EIS fitting of intact (a) and degraded (b) coatings, Rs: solution resistance, Rct: charge transfer resistance, CPEdl: double layer capacitance, Rc: coating resistance, Cc: coating capacitance
Fig.4  Time dependence of coating resistance Rc(a) and capacitance Cc(b) of 4 epoxy coating samples
Fig.5  Time dependence of EIS of intact coatings tested by the dual-electrolytic cell with immersion time and the cell spacings of 4 cm (a), 8 cm (b) and 10 cm (c, d)
Fig.6  Time dependence of EIS of the coating sample 1# subject to 40 d salt spray versus immersion time and cell spacings of 4 cm (a), 8 cm (b), 10 cm (c) and equivalent circuit of impedance measured by the dual-electrolytic cell (d), in which the RMetal represent the ohmic resistance of metal substrate between two cells, Rct the hybrid anodic and cathodic charge transfer resistance of each cell, CPEdl the double layer capacitance, and Cc and Rc the capacitance and resistance of coatings under the two single cell
Fig.7  Time dependence of the 110 Hz-impedance (|Z|110 Hz) of the coating sample 1# versus spacings and immersion time subject to salt spray test of: (a) 0 d, (b) 40 d
Fig.8  Schematic diagram of two-dimensional simulation by COMSOL Multiphysics: (a) electrolytic potential, (b) current distribution between the two electrolytic cells
Fig.9  Photos of two-electrode impedance probe
Fig.10  Comparison of EIS of Zn-rich epoxy coatings measured by the two-electrode probe and dual-electrolytic cell: (a) pristine ZRE coating, (b) ZRE coating after 40 d salt spray test
Fig.11  EIS measurement of outdoor coatings based on the two-electrode probe (a-c), the Nyquist plot and the inset photos of coating morphology at 3 different coated locations (d), and the corresponding Bode plot (e)
[1] Pang Z K, Yang J, Li G M, et al. Analysis method and detection technology of metal corrosion characteristics [J]. Environ. Technol., 2022, 40: 81
(庞志开, 杨 杰, 李光茂 等. 金属腐蚀特性分析方法与检测技术 [J]. 环境技术, 2022, 40: 81)
[2] Bastidas D M. Corrosion and protection of metals [J]. Metals, 2020, 10: 458
[3] Blanchard F, Kadi M J, Bousser E, et al. Effect of thermal ageing on the optical properties and pore structure of thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 452: 129080
[4] Ruan X, Zhang X M, Yang J, et al. Failure mode analysis and life prediction of organic coatings in marine environment [A]. 2018 National Academic Exchange Meeting on Corrosion Electrochemistry and Test methods [C]. Beijing, 2018: 272
(阮 鑫, 张小明, 杨 健 等. 有机涂层防护体系在海洋环境下失效模式的分析及其寿命预测 [A]. 2018年全国腐蚀电化学及测试方法学术交流会论文集 [C]. 北京, 2018: 272)
[5] Che K Y, Lyu P, Wan F, et al. Investigations on aging behavior and mechanism of polyurea coating in marine atmosphere [J]. Materials, 2019, 12: 3636
[6] Li Z S, Zhao S W, Shao Z W, et al. Deterioration mechanism of vanadium dioxide smart coatings during natural aging: uncovering the role of water [J]. Chem. Eng. J., 2022, 447: 137556
[7] Nicholas J, Mohamed M, Dhaliwal G S, et al. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites [J]. Compos. Eng., 2016, 94B: 370
[8] Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
[9] Choi E Y, Shin J C, Lee J Y, et al. Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor [J]. Macromol. Res., 2020, 28: 510
[10] Ishida T, Richaud E, Gervais M, et al. Thermal aging of acrylic-urethane network: kinetic modeling and end-of-life criteria combined with mechanical properties [J]. Prog. Org. Coat., 2022, 163: 106654
[11] Dogan A, Atas C. Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging [J]. J. Compos. Mater., 2016, 50: 637
[12] Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
(庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435)
[13] Wang P F, He X F, Zhang H, et al. Correlation between accelerated aging of coating and natural exposure test [J]. J. Beijing Univ. Aeronaut. Astronaut., 2022, 48: 27
(汪鹏飞, 贺小帆, 张 涵 等. 涂层加速老化与自然曝晒试验的相关性分析 [J]. 北京航空航天大学学报, 2022, 48: 27)
[14] Chen Y L, Zhang C, Li Y W, et al. Deterioration processes of organic coatings under the low-frequency alternation of wetting and drying condition [J]. Equ. Environ. Eng., 2019, 16: 122
(陈亚林, 张 丛, 李延伟 等. 低频率干湿交替环境中有机涂层失效过程 [J]. 装备环境工程, 2019, 16: 122)
[15] Diler E, Lédan F, LeBozec N, et al. Real-time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors [J]. Mater. Corros., 2017, 68: 1365
[16] Sun X G, Wang R, Zhang Z Y, et al. On-line corrosion monitoring technology for high-speed train in dynamic service circumstance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 441
(孙晓光, 王 睿, 张志毅 等. 高速列车动态服役环境腐蚀在线监测技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 441)
doi: 10.11902/1005.4537.2021.239
[17] Lin B, Fu G Q, Shen X S, et al. Pipeline corrosion and coating durability monitoring under insulation of nuclear power plant [J]. Total Corros. Control, 2020, 34: 102
(林 斌, 付国庆, 沈新生 等. 核电厂保温层下管道腐蚀与涂层耐久性监测 [J]. 全面腐蚀控制, 2020, 34: 102)
[18] Zhou W, Zhao Y G, Li W, et al. Degradation formula and working lifetime prediction for high-temperature coating [J]. Appl. Surf. Sci., 2006, 253: 2565
[19] Zhu Y P, Bousfield D, Gramlich W. Failure prediction of waterborne barrier coatings during folding [J]. J. Coat. Technol. Res., 2021, 18: 1117
[20] Zhang Z H, Wu J, Su T, et al. Life prediction for anticorrosive coatings on steel bridges [J]. Corrosion, 2020, 76: 773
[21] Fartash A H, Lyavoli H F, Poursaeidi E, et al. Interfacial delamination of porous thermal barrier coatings based on SEM image processing in finite element model [J]. Theor. Appl. Fract. Mec., 2023, 125: 103915
[22] Huang Y H, Wang J. Prediction of coating adhesion loss due to stretching [J]. Int. J. Adhes. Adhes., 2013, 40: 49
[23] Cao H L, Cao P S, Kang L P, et al. Failure analysis and damage development trend research of aero-engine high-pressure turbine blades [J]. J. Civil Aviat. Univ. China, 2017, 35: 13
(曹惠玲, 曹鹏双, 康力平 等. 发动机HPT叶片失效分析及损伤发展趋势研究 [J]. 中国民航大学学报, 2017, 35: 13)
[24] Yu W J, Wang T C, Zhao D Y, et al. Lifetime prediction model for barrier-type corrosion-resistant coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1617
(禹文娟, 王天丛, 赵东杨 等. 封闭型耐蚀涂层的寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1617)
doi: 10.11902/1005.4537.2023.383
[25] Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
(王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
[26] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
(高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
doi: 10.11902/1005.4537.2021.034
[27] Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
(王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929)
doi: 10.11902/1005.4537.2022.133
[28] Li Z X, Cao Y H, Li C J, et al. Relationship between corrosion failure degree of organic coatings and mechanical properties for dissimilar metal assamblies [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 679
(李卓玄, 曹艳辉, 李崇杰 等. 耦接件涂层失效程度与其力学损伤之间的关系 [J]. 中国腐蚀与防护学报, 2024, 44: 679)
doi: 10.11902/1005.4537.2023.370
[29] Cai G Y, Wang H W, Jiang D, et al. Impedance sensor for the early failure diagnosis of organic coatings [J]. J. Coat. Technol. Res., 2018, 15: 1259
[30] Shi W, Wang Z, Fan Y Y, et al. Design of the armament corrosion monitoring system based on CdS coating aging probe and MCU [J]. J. Naval Aviat. Univ., 2016, 31: 595
(石 薇, 王 朕, 范源远 等. 基于单片机和CdS涂层老化探头的装备腐蚀监测系统设计 [J]. 海军航空工程学院学报, 2016, 31: 595)
[31] Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
[32] Mills D J, Broster M, Razaq I. Continuing work to enable electrochemical methods to be used to monitor the performance of organic coatings in the field [J]. Prog. Org. Coat., 2008, 63: 267
[33] Larché J F, Bussière P O, Gardette J L. Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets [J]. Polym. Degrad. Stab., 2011, 96: 1530
[34] Zhang X D, Zhao Y, Guo Y F, et al. Study on aging and service life prediction of FEVE coating [J]. Paint Coat. Ind., 2013, 43: 62
(张晓东, 赵 钺, 郭燕芬 等. FEVE涂层的老化与服役寿命预测研究 [J]. 涂料工业, 2013, 43: 62)
[35] Khalifeh R, Lescop B, Gallée F, et al. Development of a radio frequency resonator for monitoring water diffusion in organic coatings [J]. Sens. Actuat. Phys., 2016, 247A: 30
[36] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings [J]. Electrochim. Acta, 1997, 42: 3293
[37] Busso E P, Evans H E, Wright L, et al. A software tool for lifetime prediction of thermal barrier coating systems [J]. Mater. Corros., 2008, 59: 556
[38] Nazarov A, Thierry D. Application of scanning kelvin probe in the study of protective paints [J]. Front. Mater., 2019, 6: 192
[39] Sheikholeslami S, Williams G, McMurray H N, et al. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET) [J]. Corros. Sci., 2021, 192: 109813
[40] Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the Scanning Vibrating Electrode Technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
[41] Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al. Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies [J]. Corros. Sci., 2016, 102: 269
[42] Almond D P, Cox R L, Moghisi M, et al. Acoustic properties of plasma-sprayed coatings and their applications to non-destructive evaluation [J]. Thin Solid Films, 1981, 83: 311
[43] Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat., 2020, 138: 105387
[44] Savill T, Jewell E. Design of a chipless RFID tag to monitor the performance of organic coatings on architectural cladding [J]. Sensors, 2022, 22: 3312
[45] Latif J, Khan Z A, Stokes K. Structural monitoring system for proactive detection of corrosion and coating failure [J]. Sens. Actuat. Phys., 2020, 301A: 111693
[1] LI Li, LI Shanwen, SHI Hongwei, LIANG Guoping, LI Chunlin, SUN Yu, QIN Jin, WANG Wei, HAN En-Hou. Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[2] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[3] WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[4] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[5] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[6] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[7] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[8] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[9] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[10] LI Chunlin, SHI Hongwei, LIANG Guoping, LI Li, WANG Hao, WANG Wei, LIU Fuchun, HAN En-Hou. Corrosion Resistance and Aging Mechanism of Polyurethane Topcoat for High-speed Train[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[11] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[12] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[13] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[14] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[15] YUAN Shicheng, WU Yanfeng, XU Changhui, WANG Xingqi, LENG Zhe, YANG Yange. Influence of Polyhydroxy Hyperdispersant on Anti-corrosion Property of Waterborne Epoxy Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
No Suggested Reading articles found!