Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 691-699    DOI: 10.11902/1005.4537.2023.171
Current Issue | Archive | Adv Search |
Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel
XU Yunfeng1, WANG Shaofeng2, HE Long2, LIU Dong3, HUANG Feng1(), LIU Jing1
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. Hangzhou Jingu Environmental Protection Equipment And Technology Co. Ltd., Hangzhou 311400, China
3. R & D Center of Wuhan Iron & Steel Co. Ltd., Baosteel Central Research Institute, Wuhan 430080, China
Cite this article: 

XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 691-699.

Download:  HTML  PDF(7240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of surface treatments of Eco Pickled Surface (EPS), picking and blasting on the hydrogen embrittlement (HE) susceptibility and hydrogen permeation kinetic of QStE700TM high-strength structural steel was comparatively assessed via slow strain rate tension (SSRT) and double electrolytic cell electrochemical hydrogen permeation device. The influence of surface treatment processes on the HE susceptibility of QStE700TM steel was discussed in terms of the variations of residual oxide scale, hardness and residual stress on the surface of steel plates subjected to different surface treatments. The results showed that the HE susceptibility of QStE700TM steel treated by EPS technique was only 8.1%, which is 12.7% and 20.5% lower than that by pickling and blasting, respectively. It would be related to the less residual oxide scale and the existed residual compressive stress on the surface of the steel plate treated by EPS. In addition, smaller hydrogen diffusion flux (JL) and effective hydrogen diffusion coefficient (Dapp) and larger lag time (tL) and cathode side subsurface hydrogen concentration (c0), should be responsible for the lower HE susceptibility of the steel samples treated by EPS. Take all factors into account, the EPS is a new, reliable, low-carbon and environmentally friendly surface descaling technology for high-strength steel.

Key words:  QStE700TM steel      EPS treatment      hydrogen embrittlement susceptibility     
Received:  22 May 2023      32134.14.1005.4537.2023.171
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(U21A20113);Natural Science Foundation Science and Technology Innovation Group of Hubei(2021CFA023)
Corresponding Authors:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.171     OR     https://www.jcscp.org/EN/Y2024/V44/I3/691

Fig.1  Microstructure image of QStE700TM high strength structural steel plate
Fig.2  Dimensions of specimen used in tensile test (unit: mm)
SampleRp0.2 / MPaRm / MPaδ / %
Pickling75681917.1
EPS72884918.5
Blasting76283816.7
Standard>700750~950>10
Table 1  Mechanical properties and requirements of QStE-700TM plate with different surface treatments
Fig.3  Dimensions of specimens used in hydrogen embrittlement susceptibility test (unit: mm)
Fig.4  Surface morphologies and EDS analysis results of QStE700TM steel samples with different surface treatments: (a) pickling, (b) EPS, (c) blasting
Fig.5  Cross-section morphologies and EDS analysis results of QStE700TM steel samples with different surface treatments: (a) pickling, (b) EPS, (c) blasting
Fig.6  Residual stresses in the 0° (a) and 90° (b) direction of QStE700TM steel plate with different surface treatments
Fig.7  Rockwell hardness values of QStE700TM steel with different surface treatments
Fig.8  Stress-displacement curves of QStE700TM steel with different surface treatments before and after hydrogen charging
SampleRp0.2 / MPaRm / MPaδIHE
Pickling713.9785.030.8%20.8%
Pickling-H763.6826.624.4%
EPS743.5788.532.0%8.1%
EPS-H732.6766.529.4%
Blasting797.15900.122.0%28.6%
Blasting-H826.2877.915.7%
Table 2  Tensile properties of QStE700TM steel with different surface treatments before and after hydrogen charging
Fig.9  Hydrogen permeation curves of QStE700TM steel with different surface treatments
SampleL / mm

I

10-6 A·cm-2

tL / s

JL

10-12 mol·cm-1·s-1

Dapp

10-6 cm2·s-1

c0

10-6 mol·cm-3

Pickling1.040.79362040.8540.2912.935
EPS1.210.86170361.0800.3473.112
Blasting0.962.39013012.3781.1812.014
Table 3  Hydrogen permeation kinetic parameters of QStE700TM steel with different surface treatments
1 Matlock D K, Kang S, De Moor E, et al. Applications of rapid thermal processing to advanced high strength sheet steel developments [J]. Mater. Charact., 2020, 166: 110397
doi: 10.1016/j.matchar.2020.110397
2 Wang Z W, Feng C C. New energy vehicle lightweight technology path and development strategy [J]. Automob. Technol. Mater., 2021, (6): 1
王智文, 冯昌川. 新能源汽车轻量化技术路径及开发策略 [J]. 汽车工艺与材料, 2021, (6): 1
3 Gao Y. Technical schemes and implementation examples of automobile lightweight [J]. Chin. J. Automot. Eng., 2018, 8: 1
高 阳. 汽车轻量化技术方案及应用实例 [J]. 汽车工程学报, 2018, 8: 1
4 Zhou C R, Chen X L, Zhou M K, et al. Cause analysis of surface blackening of SPHC hot rolled strip after pickling [J]. Phys. Exam. Test., 2020, 38(3): 41
周从锐, 陈小龙, 周明科 等. SPHC热轧带钢酸洗表面发黑原因分析 [J]. 物理测试, 2020, 38(3): 41
5 Ma C, Wang Y G, Liu Y, et al. Control and improvement of oxide scale on the surface of hot-rolled high-strength steel [J]. Phys. Exam. Test., 2022, 40(5): 1
马 聪, 汪永国, 刘 阳 等. 热轧高强钢表面氧化铁皮的控制与改善 [J]. 物理测试, 2022, 40(5): 1
6 Ma F. Control system of pickle-free surface treatment line for hot continuous rolling strip steel [J]. Mech. Eng. Automat., 2021, (2): 144
马 峰. 热连轧带钢免酸洗表面处理线控制系统 [J]. 机械工程与自动化, 2021, (2): 144
7 Gundgire T, Jokiaho T, Santa-aho S, et al. Comparative study of additively manufactured and reference 316 L stainless steel samples-Effect of severe shot peening on microstructure and residual stresses [J]. Mater. Charact., 2022, 191: 112162
doi: 10.1016/j.matchar.2022.112162
8 Wang Z, Jiang C H, Gan X Y, et al. Influence of shot peening on the fatigue life of laser hardened 17-4PH steel [J]. Int. J. Fatigue, 2011, 33: 549
doi: 10.1016/j.ijfatigue.2010.10.010
9 Cao H P, Song Z T, Liu X, et al. Application of Eco Pickled Surface (EPS) board on truck frame [J]. Automob. Technol. Mater., 2015, (9): 40
曹海鹏, 宋兆涛, 刘 鑫 等. 绿色清洁表面(EPS)板材在载货车车架上的应用 [J]. 汽车工艺与材料, 2015, (9): 40
10 Liu X Z, Liu Z H, Chen J X, et al. Application of EPS beam plate on longitudinal beam rolling production [J]. Automob. Technol. Mater., 2016, (7): 25
刘学真, 刘振海, 陈军绪 等. EPS大梁板在纵梁辊压生产中的应用 [J]. 汽车工艺与材料, 2016, (7): 25
11 Liu Q L, Zhou Q J, Venezuela J, et al. The role of the microstructure on the influence of hydrogen on some advanced high-strength steels [J]. Mater. Sci. Eng., 2018, 715A: 370
12 Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction [J]. Corros. Rev., 2016, 34: 127
doi: 10.1515/corrrev-2015-0083
13 Huang D, Xue G, Yang C F. Research on influence factors of hydrogen diffusion coefficient of pure iron [J]. Dev. Appl. Mater., 2020, 35(2): 1
黄 冬, 薛 钢, 杨超飞. 纯铁中的氢扩散系数影响因素研究 [J]. 材料开发与应用, 2020, 35(2): 1
14 Xue G, Wang T, Yang C F, et al. Existence state analysis of hydrogen existing in welding process of ferritic steel [J]. Dev. Appl. Mater., 2018, 33(5): 48
薛 钢, 王 涛, 杨超飞 等. 铁素体型钢焊接中氢的存在状态分析 [J]. 材料开发与应用, 2018, 33(5): 48
15 Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Metallogr. Microstruct. Anal., 2016, 5: 557
doi: 10.1007/s13632-016-0319-4
16 Wang Z. Study on hydrogen diffusion and its effect on hydrogen embrittlement of high strength DP steels [D]. Wuhan: Wuhan University of Science and Technology, 2021
王 贞. 高强DP钢中氢扩散行为及其对氢脆敏感性的影响 [D]. 武汉: 武汉科技大学, 2021
17 Cheng X, Gui X L, Gao G H. Retained austenite in advanced high strength steels: a review [J]. Mater. Rep., 2023, 37(7): 21070186
程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述 [J]. 材料导报, 2023, 37(7): 21070186
18 Liu D L, Tao C H, Liu C K, et al. New phenomenons and knowledge of steel hydrogen embrittlement [J]. Fail. Anal. Prev., 2015, 10: 376
刘德林, 陶春虎, 刘昌奎 等. 钢氢脆失效的新现象与新认识 [J]. 失效分析与预防, 2015, 10: 376
19 Zhou Z L. Effect of shot peening on hydrogen diffusion and embrittlement in low alloy steel [D]. Xuzhou: China University of Mining and Technology, 2019
周志凌. 表面喷丸处理对低合金钢氢扩散和氢脆影响研究 [D]. 徐州: 中国矿业大学, 2019
20 Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrogen Energy, 2018, 43: 2293
doi: 10.1016/j.ijhydene.2017.11.155
21 Wen Q Y, Huang F, Xiao H, et al. Improving hydrogen induced cracking resistance of high strength acid-resistant submarine pipeline steels via trace-Mg treatment [J]. Int. J. Hydrogen Energy, 2023, 48: 14808
doi: 10.1016/j.ijhydene.2022.12.322
22 Huang H L, Yan X F, Huang R J, et al. Research on application technology of EPS steel switching [J]. Automob. Technol. Mater., 2021, (3): 7
黄海玲, 严学峰, 黄瑞建 等. EPS钢切换应用技术研究 [J]. 汽车工艺与材料, 2021, (3): 7
23 Li X F, Zhang J, Shen S C, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel [J]. Mater. Sci. Eng., 2017, 682A: 359
24 Mostafijur Rahman K M, Mohtadi-Bonab M A, Ouellet R, et al. Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions [J]. Int. J. Press. Vessel. Pip., 2019, 173: 147
doi: 10.1016/j.ijpvp.2019.05.006
25 Wang Y F, Li Y Z, Huang Y T, et al. Effect of grain size on hydrogen embrittlement of 304L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 494
王艳飞, 李耀州, 黄玉婷 等. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 494
doi: 10.11902/1005.4537.2022.238
26 Wang D, Hagen A B, Fathi P U, et al. Investigation of hydrogen embrittlement behavior in X65 pipeline steel under different hydrogen charging conditions [J]. Mater. Sci. Eng., 2022, 860A: 144262
27 Mohtadi-Bonab M A, Masoumi M, Szpunar J A. A comparative fracture analysis on as-received and electrochemically hydrogen charged API X60 and API X60SS pipeline steels subjected to tensile testing [J]. Eng. Fail. Anal., 2021, 129: 105721
doi: 10.1016/j.engfailanal.2021.105721
28 Ke S Z, Liu J, Huang F, et al. Effect of pre-strain on hydrogen embrittlement susceptibility of DP600 steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 424
柯书忠, 刘 静, 黄 峰 等. 预应变对DP600钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 424
doi: 10.11902/1005.4537.2017.164
29 Li S J. Effects of shot peening on hydrogen resistance of metal materials [D]. Beijing: China University of Petroleum, Beijing, 2020
李树杰. 喷丸处理对金属材料阻氢性能的影响 [D]. 北京: 中国石油大学(北京), 2020
30 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
31 Zhou B X, Yao M Y, Li Q. Study on hydrogen induced delayed cracking behavior of Zirconium alloys caused by surface defects [J]. Nucl. Power Eng., 2023, 44(3): 1
周邦新, 姚美意, 李 强. 锆合金表面缺陷引起氢致延迟开裂行为的研究 [J]. 核动力工程, 2023, 44(3): 1
[1] WANG Zhen, LIU Jing, ZHANG Shiqi, HUANG Feng. Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
No Suggested Reading articles found!