|
|
Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines |
ZHU Yesen1,2( ), CAI Kun1, HU Baowen1, XIA Yunqiu1, HU Taoyong1, HUANG Yi2 |
1.Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China 2.State Key Laboratory Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
ZHU Yesen, CAI Kun, HU Baowen, XIA Yunqiu, HU Taoyong, HUANG Yi. Research Progress on Characteristics and Prediction Models of Carbon Dioxide Induced Corrosion for Submarine Pipelines. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1225-1236.
|
Abstract Firstly, the mechanism of CO2 induced corrosion of submarine pipeline is introduced, including chemical reaction process, electrochemical reaction process, mass transfer process and film formation process. Secondly, the influencing factors of CO2 induced corrosion of submarine pipelines are summarized, which mainly include material factors determined by chemical composition and microstructure, and external environmental factors determined by medium composition, temperature and pH, etc. At the same time, the empirical/semi-empirical regulations of the corrosion rate versus influencing factors are summarized. Finally, the models of CO2 induced corrosion of submarine pipeline is summarized, and the control steps and boundary conditions of the principle model and empirical model for corrosion-assessment and -prediction are introduced in detail.
|
Received: 23 November 2022
32134.14.1005.4537.2022.366
|
|
Fund: China Postdoctoral Science Foundation(2022M722955);Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(GZ22118) |
Corresponding Authors:
ZHU Yesen, E-mail: zhuyesen@163.com
|
1 |
Chen Z T. Experimental study of weld corrosion in the submarine pipeline expansion bend installed from WC13-1 platform to FPSO [D]. Chengdu: Southwest Petroleum University, 2018
|
|
陈卓婷. WC13-1平台至FPSO海底管道膨胀弯焊缝腐蚀实验研究 [D]. 成都: 西南石油大学, 2018
|
2 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data to prevent disasters [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
3 |
Zhang C R, Yu S Y. Carbon Dioxide Gas Well Testing and Evaluation Methods [M]. Beijing: Petroleum Industry Press, 1999
|
|
张川如, 虞绍永. 二氧化碳气井测试与评价方法 [M]. 北京: 石油工业出版社, 1999
|
4 |
Hua Y. An experimental study of corrosion for long distance carbon transportation pipelines [D]. Leeds: University of Leeds, 2015
|
5 |
Wang Z Z. Galvanic corrosion and inhibition mechanism of N80 carbon steel-13Cr stainless steel under supercritical CO2 conditions [D]. Wuhan: Huazhong University of Science and Technology, 2019
|
|
王准章. 超临界CO2环境中N80碳钢与13Cr不锈钢电偶腐蚀及缓蚀机理 [D]. 武汉: 华中科技大学, 2019
|
6 |
Azzolina N A, Nakles D V, Gorecki C D, et al. CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations [J]. Int. J. Greenhouse Gas Control, 2015, 37: 384
doi: 10.1016/j.ijggc.2015.03.037
|
7 |
Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update [J]. Energy Environ. Sci., 2014, 7: 130
doi: 10.1039/C3EE42350F
|
8 |
Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2–water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
doi: 10.1016/j.ijggc.2010.11.008
|
9 |
White W E. A working party report on predicting CO2 corrosion in the oil and gas industry: European federation of corrosion publications, number 13 (published for the EFC by the Institute of Materials, London, U.K., 1994), 173 pages, $100.00 (available in the U.S.A. from Ashgate Publishing Company, Brookfield, VT) [J]. Mater. Charact., 1995, 35: 141
doi: 10.1016/1044-5803(95)80113-8
|
10 |
Shen K L. Corrosion characteristics and mechanism of supercritical CO2 pipeline in carbon capture and storage (CCS) [D]. Chongqing: Chongqing University of Science and Technology, 2018
|
|
沈溃领. 面向碳捕获与封存 (CCS) 的超临界CO2输送管道腐蚀特性及机理研究 [D]. 重庆: 重庆科技学院, 2018
|
11 |
Johnson K, Holt H, Helle K, et al. Mapping of potential HSE issues related to large-scale capture, transport and storage of CO2 [R]. Horvik: Det Norsk Veritas, 2008
|
12 |
Videm K, Dugstad A. Effect of flow rate, pH, Fe2+ concentration and steel quality on the CO2 corrosion of carbon steels [A]. Proceedings of the NACE Corrosion Conference and Expo 1987 [C]. San Francisco, 1987
|
13 |
Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 241
|
|
贾志军, 李晓刚, 梁平 等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 241
|
14 |
Jia Z J, Du C W, Li X G. Effect of temperature on electrochemical corrosion behavior of N80 steel in CO2 saturated NaCl solution [J]. Corros. Prot., 2011, 32: 613
|
|
贾志军, 杜翠薇, 李晓刚. 温度对N80钢在CO2饱和的NaCl溶液中的腐蚀电化学行为的影响 [J]. 腐蚀与防护, 2011, 32: 613
|
15 |
Schmitt G A, Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
|
16 |
Feng B, Yang M, Li B F, et al. Mechanism and influence factors of CO2 corrosion [J]. Liaoning Chem. Ind., 2010, 39: 976
|
|
冯 蓓, 杨 敏, 李秉风 等. 二氧化碳腐蚀机理及影响因素 [J]. 辽宁化工, 2010, 39: 976
|
17 |
Gopal M, Rajappa S. Effect of multiphase slug flow on the stability of corrosion product layer [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
|
18 |
Ramachandran S, Campbell S, Ward M B. Interactions and properties of corrosion inhibitors with by-product layers [J]. Corrosion, 2001, 57: 508
doi: 10.5006/1.3290376
|
19 |
Crolet J L, Thévenot N, Nesic S. Role of conductive corrosion products on the protectiveness of corrosion layers [A]. Proceedings of the Corrosion 96 [C]. Denver, 1996
|
20 |
Cui M W. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline [D]. Qingdao: China University of Petroleum (East China), 2014
|
|
崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究 [D]. 青岛: 中国石油大学(华东), 2014
|
21 |
Zhao C J. Analysis of multiphase flow containing CO2 corrosion assessment technology [D]. Qingdao: China University of Petroleum (East China), 2016
|
|
赵常俊. 含CO2多相流管道内腐蚀评价分析 [D]. 青岛: 中国石油大学(华东), 2016
|
22 |
Chen J K, Wang Y S, Zhang W. FeCO3 nucleation and growth behavior and its effect on corrosion evolution during CO2 corrosion process of carbon steel based on lattice Boltzmann method [J]. J. Eng. Thermophys., 2019, 40: 2843
|
|
陈聚凯, 王跃社, 张 文. 基于格子Boltzmann方法的碳钢CO2腐蚀产物(FeCO3)成核生长行为及其腐蚀演化机理研究 [J]. 工程热物理学报, 2019, 40: 2843
|
23 |
Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
|
|
赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
|
24 |
Chen C F. Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel [D]. Xi'an: Northwestern Polytechnical University, 2002
|
|
陈长风. 油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究 [D]. 西安: 西北工业大学, 2002
|
25 |
Li J Z, Wang H C, Li N. The hazards and research status of carbon dioxide corrosion in oil and gas [J]. Guangzhou Chem. Ind., 2011, 39(21): 21
|
|
李建忠, 王海成, 李 宁. 油气田开发中二氧化碳腐蚀的危害与研究现状 [J]. 广州化工, 2011, 39(21): 21
|
26 |
Zhu D F. Influence of corrosion scale on CO2 corrosion of marine gas pipeline [J]. Corros. Prot., 2019, 40: 633
|
|
朱道峰. 腐蚀垢层对海洋天然气管道CO2腐蚀过程的影响 [J]. 腐蚀与防护, 2019, 40: 633
|
27 |
Dugstad A. Mechanism of protective film formation during CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 98 [C]. San Diego, 1998
|
28 |
Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production—a compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
|
29 |
Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution [J]. Corros. Sci., 2013, 70: 170
doi: 10.1016/j.corsci.2013.01.026
|
30 |
Wei L, Pang X L, Liu C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment [J]. Corros. Sci., 2015, 100: 404
doi: 10.1016/j.corsci.2015.08.016
|
31 |
Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: film growth model [J]. Corrosion, 2003, 59: 616
doi: 10.5006/1.3277592
|
32 |
Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification [J]. Corrosion, 2003, 59: 443
doi: 10.5006/1.3277576
|
33 |
Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
|
34 |
Nazari M H, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
doi: 10.1016/j.matdes.2010.01.038
|
35 |
Pessu F, Barker R, Neville A. The influence of pH on localized corrosion behavior of X65 carbon steel in CO2-saturated brines [J]. Corrosion, 2015, 71: 1452
doi: 10.5006/1770
|
36 |
Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
doi: 10.1016/j.corsci.2012.03.006
|
37 |
Gao K W, Yu F, Pang X L, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates [J]. Corros. Sci., 2008, 50: 2796
doi: 10.1016/j.corsci.2008.07.016
|
38 |
Hassani S, Roberts K P, Shirazi S A, et al. Flow loop study of chloride concentration effect on erosion, corrosion and erosion-corrosion of carbon steel in CO2 saturated systems [A]. Proceedings of the Corrosion 2011 [C]. Houston, 2011
|
39 |
Al-Aithan G H, Al-Mutahar F M, Shadley J R, et al. A mechanistic erosion-corrosion model for predicting iron carbonate (FeCO3) scale thickness in a CO2 environment with sand [A]. Proceedings of the Corrosion 2014 [C]. San Antonio, 2014
|
40 |
Li T, Yang Y J, Gao K W, et al. Mechanism of protective film formation during CO2 corrosion of X65 pipeline steel [J]. J. Univ. Sci. Technol. Beijing, Miner., Metall., Mater., 2008, 15: 702
|
41 |
Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and cr steels [J]. Adv. CO2 Corros., 1984, 22: 91
|
42 |
Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
doi: 10.1021/ie801819y
|
43 |
Tanupabrungsun T, Young D, Brown B, et al. Construction and verification of Pourbaix diagrams for CO2 corrosion of mild steel valid up to 250 ℃ [A]. Proceedings of the Corrosion 2012 [C]. Salt Lake City, 2012
|
44 |
Yin Z F, Feng Y R, Zhao W Z, et al. Effect of temperature on CO2 corrosion of carbon steel [J]. Surf. Interface Anal., 2009, 41: 517
doi: 10.1002/sia.v41:6
|
45 |
Shannon D W. Role of chemical components in geothermal brine on corrosion [A]. Proceedings of the NACE Corrosion Conference and Expo 1978 [C]. Houston, 1978
|
46 |
Tanupabrungsun T, Brown B, Nesic S. Effect of ph on CO2 corrosion of mild steel at elevated temperatures [A]. Proceedings of the Corrosion 2013 [C]. Orlando, 2013
|
47 |
Zhu Y S, Xu Y Z, Wang M Y, et al. Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multi-electrode array [J]. Ocean Eng., 2019, 189: 106351
doi: 10.1016/j.oceaneng.2019.106351
|
48 |
Cheng Y F, Wilmott M, Luo J L. The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise [J]. Appl. Surf. Sci., 1999, 152: 161
doi: 10.1016/S0169-4332(99)00328-1
|
49 |
Nyborg R, Dugstad A. Understanding and prediction of mesa corrosion attack [A]. Proceedings of the Corrosion 2003 [C]. San Diego, 2003
|
50 |
Schmitt G, Bosch C, Mueller M, et al. A probabilistic model for flow induced localized corrosion [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
|
51 |
Zhu Y S, Xu Y Z, Song S D, et al. Probing the nonuniform corrosion of pipeline weldments under stepwise increasing solution temperature using a coupled multielement electrical resistance sensor [J]. Mater. Corros., 2020, 71: 1386
|
52 |
Szklarska-Smialowska Z. Mechanism of pit nucleation by electrical breakdown of the passive film [J]. Corros. Sci., 2002, 44: 1143
doi: 10.1016/S0010-938X(01)00113-5
|
53 |
Li H. A mechanistic model for CO2 localized corrosion of carbon steel [D]. Ohio: Ohio University, 2011
|
54 |
Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
doi: 10.1016/j.corsci.2019.06.016
|
55 |
Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
|
|
李瑞涛, 肖 博, 刘 晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327
doi: 10.11902/1005.4537.2020.115
|
56 |
Gulbrandsen E, Stangeland A, Burchardt T, et al. Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel [A]. Proceedings of the Corrosion 98 [C]. San Diego, 1998
|
57 |
Nyborg R, Gulbrandsen E, Loeland T, et al. Effect of steel microstructure and composition on inhibition of CO2 corrosion [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
|
58 |
Paolinelli L D, Pérez T, Simison S N. The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion [J]. Corros. Sci., 2008, 50: 2456
doi: 10.1016/j.corsci.2008.06.031
|
59 |
Kato C, Otoguro Y, Kado S, et al. Grooving corrosion in electric resistance welded steel pipe in sea water [J]. Corros. Sci., 1978, 18: 61
doi: 10.1016/S0010-938X(78)80076-6
|
60 |
Duran C, Treiss E, Herbsleb G. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water [J]. Mater. Perform., 1986, 25: 41
|
61 |
Sun Q X. Corrosion and Protection of Materials [M]. Beijing: Metallurgical Industry Press, 2001
|
|
孙秋霞. 材料腐蚀与防护 [M]. 北京: 冶金工业出版社, 2001
|
62 |
Sk M H, Abdullah A M, Qi J, et al. The effects of Cr/Mo micro-alloying on the corrosion behavior of carbon steel in CO2-saturated (sweet) brine under hydrodynamic control [J]. J. Electrochem. Soc., 2018, 165: C278
doi: 10.1149/2.1011805jes
|
63 |
Wang X H, Li Z S, Tang Y F, et al. Influence of Cr content on characteristics of corrosion product film formed on several steels in artifitial stratum waters containing CO2-H2S-Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1043
|
|
王小红, 李子硕, 唐御峰 等. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1043
doi: 10.11902/1005.4537.2021.272
|
64 |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
|
|
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
65 |
Alves V A, Brett C M A, Cavaleiro A. Influence of heat treatment on the corrosion of high speed steel [J]. J. Appl. Electrochem., 2001, 31: 65
doi: 10.1023/A:1004157623466
|
66 |
Asahi H, Kushida T, Kimura M, et al. Role of microstructures on stress corrosion cracking of pipeline steels in carbonate-bicarbonate solution [J]. Corrosion, 1999, 55: 644
doi: 10.5006/1.3284018
|
67 |
Pan X, Ren Z, Lian J B, et al. Effect of heat treatment process on corrosion behavior of super 13Cr stainless steel in CO2-saturated oilfield formation aqueous solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 752
|
|
潘 鑫, 任 泽, 连景宝 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2022, 42: 752
|
68 |
Clover D, Kinsella B, Pejcic B, et al. The influence of microstructure on the corrosion rate of various carbon steels [J]. J. Appl. Electrochem., 2005, 35: 139
doi: 10.1007/s10800-004-6207-7
|
69 |
Mora-Mendoza J L, Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions [J]. Corros. Sci., 2002, 44: 1223
doi: 10.1016/S0010-938X(01)00141-X
|
70 |
López D A, Schreiner W H, de Sánchez S R, et al. The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization [J]. Appl. Surf. Sci., 2003, 207: 69
doi: 10.1016/S0169-4332(02)01218-7
|
71 |
López D A, Schreiner W H, de Sánchez S R, et al. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: an XPS and SEM characterization [J]. Appl. Surf. Sci., 2004, 236: 77
doi: 10.1016/j.apsusc.2004.03.247
|
72 |
Zhu Y S, Xu Y Z, Li K T, et al. Experimental study on non-uniform corrosion of elbow-to-pipe weldment using multiple ring form electrical resistance sensor array [J]. Measurement, 2019, 138: 8
doi: 10.1016/j.measurement.2019.02.035
|
73 |
Huang H H, Tsai W T, Lee J T. The influences of microstructure and composition on the electrochemical behavior of A516 steel weldment [J]. Corros. Sci., 1994, 36: 1027
doi: 10.1016/0010-938X(94)90201-1
|
74 |
Deen K M, Ahmad R, Khan I H, et al. Microstructural study and electrochemical behavior of low alloy steel weldment [J]. Mater. Des., 2010, 31: 3051
doi: 10.1016/j.matdes.2010.01.025
|
75 |
Al-Hassan S, Mishra B, Olson D L, et al. Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide [J]. Corrosion, 1998, 54: 480
doi: 10.5006/1.3284876
|
76 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
|
77 |
Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials [J]. Corros. Sci., 2012, 62: 90
doi: 10.1016/j.corsci.2012.04.040
|
78 |
Kuang X R. Research in gathering pipeline with CO2 corrosion and material selection technology [D]. Xi'an: Xi'an Shiyou University, 2011
|
|
邝献任. 含CO2集输管线腐蚀及选材技术研究 [D]. 西安: 西安石油大学, 2011
|
79 |
Li C F. Research on CO2 corrosion mechanism and protection technology during oil and gas development [D]. Chengdu: Southwest Petroleum University, 2005
|
|
李春福. 油气开发过程中的CO2腐蚀机理及防护技术研究 [D]. 成都: 西南石油学院, 2005
|
80 |
Oddo J E, Tomson M B. Simplified calculation of CACO3 saturation at high temperatures and pressures in brine solutions [J]. J. Pet. Technol., 1982, 34: 1583
doi: 10.2118/10352-PA
|
81 |
Sun W. Kinetics of iron carbonate and iron sulfide scale formation in CO2/H2S corrosion [D]. Ohio: Ohio University, 2006
|
82 |
Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
|
|
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
|
83 |
Nesic S, Lee J, Ruzic V. A mechanistic model of iron carbonate film growth and the effect on CO2 corrosion of mild steel [A]. Proceedings of the Corrosion 2002 [C]. Denver, 2002
|
84 |
de Waard C, Lotz U, Milliams D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines [J]. Corrosion, 1991, 47: 976
doi: 10.5006/1.3585212
|
85 |
Zhang G, You Y, Liu D. Experimental study on the effect of CO2 partial pressure on the corrosion of N80 steel [A]. Proceedings of 2019 Aviation Equipment Service Support and Maintenance Technology Forum and China Aviation Industry Technology and Equipment Engineering Association Annual Conference [C]. Nanchang, 2019
|
|
张 刚, 由 洋, 刘 栋. CO2分压对N80钢腐蚀影响的试验测试研究 [A]. 2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会论文集 [C]. 南昌, 2019
|
86 |
Huang T J, Ma F, Fan D Y, et al. Study on oxygen corrosion behavior of N80 casing steel by partial pressure ratio of CO2 and O2 [J]. Pet. Knowl., 2020, (2): 58
|
|
黄天杰, 马 锋, 范冬艳 等. CO2和O2的分压比对N80套管钢氧腐蚀行为研究 [J]. 石油知识, 2020, (2): 58
|
87 |
Han J B. Galvanic mechanism of localized corrosion for mild steel in carbon dioxide environments [D]. Ohio: Ohio University, 2009
|
88 |
Yang Z C, Cai Y Y, Zhu Y S, et al. Effects of medium condition on CO2 corrosion of X65 pipeline steel and its welded joint [J]. Corros. Prot., 2019, 40: 717
|
|
杨壮春, 蔡伊扬, 朱烨森 等. 介质条件对X65管线钢及其焊接接头CO2腐蚀的影响 [J]. 腐蚀与防护, 2019, 40: 717
|
89 |
Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
|
|
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
|
90 |
Li W, Pots B F M, Brown B, et al. A direct measurement of wall shear stress in multiphase flow—is it an important parameter in CO2 corrosion of carbon steel pipelines? [J]. Corros. Sci., 2016, 110: 35
doi: 10.1016/j.corsci.2016.04.008
|
91 |
de Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
doi: 10.5006/0010-9312-31.5.177
|
92 |
StandardNorway. M-506 CO2corrosion rate calculation model [S]. Norway: NORSOK Standard, 2005
|
93 |
Halvorsen A M, Sontvedt T. CO2 corrosion model for carbon steel including wall shear stress model for multiphase flow and limits for production rate to avoid mesa attack [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
|
94 |
Anderko A M, Young R D. Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models [A]. Proceedings of the Corrosion 99 [C]. San Antonio, 1999
|
95 |
Anderko A M. Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models [A]. Proceedings of the Corrosion 2000 [C]. Orlando, 2000
|
96 |
Choi Y S, Hassani S, Vu T N, et al. Development of a prediction model for high pCO2 corrosion of mild steel [A]. Proceedings of the Corrosion 2019 [C]. Nashville, 2019
|
97 |
Nesic S, Cai J Y, Lee K L. A multiphase flow and internal corrosion prediction model for mild steel pipelines [A]. Proceedings of the Corrosion 2005 [C]. Houston, 2005
|
98 |
Shayegani M, Afshar A, Ghorbani M, et al. Mild steel carbon dioxide corrosion modelling in aqueous solutions [J]. Corros. Eng. Sci. Technol., 2008, 43: 290
doi: 10.1179/174327807X234679
|
99 |
Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenh. Gas Control, 2011, 5: 777
doi: 10.1016/j.ijggc.2011.02.005
|
100 |
Barker R, Al Shaaili I, De Motte R A, et al. Iron carbonate formation kinetics onto corroding and pre-filmed carbon steel surfaces in carbon dioxide corrosion environments [J]. Appl. Surf. Sci., 2019, 469: 135
doi: 10.1016/j.apsusc.2018.10.238
|
101 |
De Motte R, Mingant R, Kittel J, et al. Near surface pH measurements in aqueous CO2 corrosion [J]. Electrochim. Acta, 2018, 290: 605
doi: 10.1016/j.electacta.2018.09.117
|
102 |
Zhu Y S, Huang Y S, Xu Y Z, et al. The study of pipeline localized corrosion using a novel designed electrical resistance sensor array [A]. Proceedings of the Corrosion & Prevention 2018 Conference [C]. Adelaide, 2018
|
103 |
Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments [J]. J. Supercrit. Fluids, 2013, 82: 1
doi: 10.1016/j.supflu.2013.05.016
|
104 |
Li Y Y, Zhu G Y, Hou B S, et al. A numerical model based on finite element method for predicting the corrosion of carbon steel under supercritical CO2 conditions [J]. Process Saf. Environ. Protect., 2021, 149: 866
doi: 10.1016/j.psep.2021.03.030
|
105 |
Duan Z H, Li D D. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250 ℃, 1 to 1000 bar with NaCl concentrations up to saturation of halite [J]. Geochim. Cosmochim. Acta, 2008, 72: 5128
doi: 10.1016/j.gca.2008.07.025
|
106 |
Li D D, Duan Z H. The speciation equilibrium coupling with phase equilibrium in the H2O-CO2-NaCl system from 0 to 250 ℃, from 0 to 1000 bar, and from 0 to 5 molality of NaCl [J]. Chem. Geol., 2007, 244: 730
doi: 10.1016/j.chemgeo.2007.07.023
|
107 |
Wang X G, Conway W, Burns R, et al. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution [J]. J. Phys. Chem., 2010, 114A: 1734
|
108 |
Sun C, Liu S B, Li J K, et al. Insights into the interfacial process in electroless Ni-P coating on supercritical CO2 transport pipeline as relevant to carbon capture and storage [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16243
doi: 10.1021/acsami.9b03623
|
109 |
Nešić S, Kahyarian A, Choi Y S. Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines [J]. Corrosion, 2019, 75: 274
doi: 10.5006/3093
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|