Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1216-1224    DOI: 10.11902/1005.4537.2022.338
Current Issue | Archive | Adv Search |
Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor
ZHANG Xinyi, LI Cong(), WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Cite this article: 

ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1216-1224.

Download:  HTML  PDF(5407KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a candidate of Generation IV fast reactors, Lead Fast Reactors (LFRs) have attracted global research interests for past decades. Liquid lead and lead-bismuth eutectic (LBE) are both proposed as the coolants for LFRs due to their favorable transmutation and breeding capability. However, the direct exposure to heavy liquid metals can lead to premature failures of the structural steels, such as liquid metal corrosion and liquid metal embrittlement. It has been widely proven that the corrosion performance of structural steels all depends on various environment parameters such as ambient temperature, the dissolved oxygen concentration in liquid metals, liquid flow pattern, and the co-existing irradiation. For the latter cases, liquid metal corrosion can therefore be generalized to erosion-assisted mechanical failure and irradiation damage. Here we reviewed the research progress on liquid metal corrosion issues theoretically and experimentally for LFRs. The progress can be categorized into following aspects: (1) microscopic liquid metal corrosion mechanism revealed by advanced material characterization methods as well as density functional theory, (2) development of anti-corrosion materials and surface modification techniques, (3) design of dynamic corrosion apparatus to investigate erosion-corrosion synergy in flowing liquid metals and long-term corrosion prediction modelling concerning primarily with liquid Pb/LBE loops, (4) introduction of various in-situ irradiation sources (i.e. neutrons, heavy ions and protons) to the liquid Pb/LBE corrosion apparatus to investigate the irradiation-corrosion synergistic effects.

Key words:  lead-cooled fast reactors      liquid metal corrosion      erosion-corrosion synergy      irradiation-corrosion synergy     
Received:  30 October 2022      32134.14.1005.4537.2022.338
ZTFLH:  TL214  
Fund: National Natural Science Foundation of China(12027813);National Key R&D Program of China(2022YFB1902503);Fundamental Research Funds for the Central Universities(2022MS035)
Corresponding Authors:  LI Cong, E-mail: clever@ncepu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.338     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1216

Fig.1  Schematic illustrations of dissolution corrosion of 4H-SiC in touch with liquid Pb/Bi[11]: (a) clean surface atomic displacement and dissolution of C atoms and vacancies formed, (b) Si amorphization layer, (c) effect of charged vacancy on liquid Pb/Bi corrosion resistance
Fig.2  Distribution of average peak width given by synchronous X-ray Laue diffraction on the cross section of FeCrAl alloy after liquid LBE corrosion at 800 ℃ (a) and local Laue diffraction peaks at different depths corresponding to the points marked in Fig.2a (b-d)[13]
Corrosion environment parameterAlloy bulk or coating componentOxide thicknessOxide phase

Static liquid Pb, 10-6% oxygen concentration,

600 °C, 2000 h[20-22]

Al9.8Cr30.3Fe33.0Ni26.90.13-0.4 μm(Fe, Cr)3O4&Cr2O3outside+Al2O3 inside
Al11.7Cr22.4Fe33.3Ni32.60.1 μmMixed oxide layer of Cr2O3-Al2O3 with γ-Al2O3 branches
Al9.8Cr22.5Fe33.2Ni34.50.12 μmCr2O3&Al2O3
Al6.0Cr25.0Fe34.0Ni35.00.14 μmCr2O3&Al2O3
Al8.0Cr23.2Fe34.0Ni34.8UnknownDiscontinuous oxide layer
Al8.0Cr23.0Ni35.0Fe34.0400 nmCr2O3&(Al, Cr)2O3 (1000 h)
Al8.0Cr22.0Fe32.0Ni33.0Cu5.00.3-0.5 μmFe(Cr, Al)2O4 outside+Al2O3inside (1000 h); exfoliated oxide layer (2000 h)
Al7.9Cr22.0Fe31.9Ni33.2Ti5.03.0-6.0 μmCr2O3&PbTiO3 outside+Al2O3 inside
Al8.2Cr21.4Fe30.3Ni35.0Nb5.10.4 μmPbNbO outside+Al2O3 inside
Static LBE, saturated oxygen, 550 ℃, 600 °C, 500 h[23]AlTiN amorphous coatings2-4 μm

(Fe(Fe x Cr1-x )2O4) (550 ℃);

TiO2&γ- Al2O3 (600 ℃)

Static LBE,

saturated oxygen,

550 ℃, 500 h[24]

Ti100-x Si x N amorphous coatings

(X=10, 15, 20)

UnknownTiO x

Static LBE,

saturated oxygen,

400 ℃, 500 h[25]

Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2

amorphous coatings

UnknownFe3O4 outside+Cr2O3&PbO inside

Static LBE,

saturated oxygen, 550 ℃,650 ℃, 1000 h[26]

AlCrFeMoTi high entropy alloy coatings

(Al=21.1%, Cr=20.1%, Fe=16.4%, Mo=18.8%, Ti=20.4%, atomic fraction)

0.5 μm (550 ℃)

1 μm (650 ℃)

Cr2O3,TiO2&(Fe, Cr)3O4

Static LBE,

saturated oxygen,

500 ℃, 1000 h[27]

Fe47-x Cr20Mo10W x C15B6Y2(x=0, 2%, 4%, 6%, atomic fraction) amorphous alloys2.2-2.7 μmFeCr2O4 outside+amorphous layer inside
Table 1  Summary of investigations on corrosion of high entropy alloys and amorphous materials (either bulk alloys or coatings) in liquid lead or LBE[20-27]
InstitutionCorrosion setupOperating temperatureDuration of corrosion testOxygen concentrationFluid rate of liquid metals
Japan Atomic Energy Research InstituteJAERI LBE loop [37, 38]450±50 ℃3000 hTheoretical solution limit of 3.2×10-4 %; experimentally measured value of 1.0×10-3 %1 m/s
350-450 ℃3600 h10-8%-10-9%0.7 m/s
The University of New Mexico & Los Alamos National LaboratoryLOBO lead loop [39]500-700 ℃UndefinedUndefined≤3 m/s
Karlsruher Institut für TechnologieCORRIDA LBE loop[40-42]400 ℃13000 h10-7%2 m/s
550±5 ℃20039 h1.4×10-6%-1.6×10-6%2.0±0.2 m/s
CORELLA dual tank [43]≤650 ℃Undefined10-10%-10-4%≤4.5 m/s
SCK-CENCRAFT LBE Loop [44]401 ℃19732 h1.0×10-7%-2.0×10-7%2 m/s
UJV-REZLBE Loop [45]400-500 ℃1000 h0.3×10-5%-2.0×10-5%0.01-0.02 m/s
Jiangsu UniversitySingle tank type device [8, 46]550 ℃1500 hOxygen-saturated1.70-2.98  m/s
Anhui Institute of Optics and Fine MechanicsDual tank type device [36, 47]400 ℃1000 hOxygen-saturated1-5 m/s
Table 2  Related parameters of liquid lead/LBE dynamic corrosion experiments[36-48]
Fig.3  BSE image of a typical LBE penetration path on the cross section of T91 after exposure to perpendicular LBE flow at a fluid rate of 5 m/s for 1000 h (a), Kernel average misorientation map (b) and inverse pole figure+image quality map corresponding to the area bordered with yellow line in Fig.3a (c)[36]
Fig.4  Irradiation rig, designed for the irradiation of the steel specimens in LBE (a), detailed view on the test assembly (b) and photograph of the actual irradiation rig (c)[53]
1 Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atomic Energy Sci. Technol., 2020, 54: 1638
荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
2 Long B, Qin B, Ruan Z S, et al. Selection and main problems of fuel and structural materials for Pb-Bi cold fast reactor [A]. The Second Academic Conference on Nuclear Materials Technology Innovation [C]. Shanghai, 2019
龙 斌, 秦 博, 阮章顺 等. 铅铋冷快堆燃料与结构材料的选择及主要问题 [A]. 第二届核材料技术创新学术会议 [C]. 上海, 2019
3 Anderoglu O, Marino A, Hosemann P. Corrosion in heavy liquid metals for energy systems [J]. JOM, 2021, 73: 3998
doi: 10.1007/s11837-021-04973-8
4 Hosemann P, Frazer D, Fratoni M, et al. Materials selection for nuclear applications: Challenges and opportunities [J]. Scr. Mater., 2018, 143: 181
doi: 10.1016/j.scriptamat.2017.04.027
5 Lee S G, Shin Y H, Park J, et al. High-temperature corrosion behaviors of structural materials for lead-alloy-cooled fast reactor application [J]. Appl. Sci., 2021, 11: 2349
doi: 10.3390/app11052349
6 Odette R, Zinkle S. Structural Alloys for Nuclear Energy Applications [M]. Newnes, 2019: 240
7 Furukawa T, Müller G, Schumacher G, et al. Corrosion behavior of FBR candidate materials in stagnant Pb-Bi at elevated temperature [J]. J. Nucl. Sci. Technol., 2004, 41: 265
doi: 10.1080/18811248.2004.9715484
8 Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899
doi: 10.11902/1005.4537.2020.161
9 Xu Y C, Zhang Y G, Li X Y, et al. The adsorption and dissolution properties of iron surfaces in liquid lithium and lead under a fusion environment [J]. J. Nucl. Mater., 2019, 524: 200
doi: 10.1016/j.jnucmat.2019.06.033
10 Zhou T, Gao X, Ma Z W, et al. Atomistic simulation of α-Fe(100)-lead-bismuth eutectic (LBE) solid-liquid interface [J]. J. Nucl. Mater., 2021, 555: 153107
doi: 10.1016/j.jnucmat.2021.153107
11 Lei Y W, Zhang Y G, Li X Y, et al. Simulation and experimental studies of the dissolution corrosion of 4H-SiC in liquid Pb/Bi [J]. Appl. Surf. Sci., 2022, 585: 152686
doi: 10.1016/j.apsusc.2022.152686
12 Ye Z F, Wang P, Dong H, et al. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation [J]. Sci. Rep., 2016, 6: 35268
doi: 10.1038/srep35268 pmid: 27734928
13 Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
14 Hosemann P, Bai S, Bickel J, et al. Corrosion testing of additively manufactured FeCrAl alloy in LBE [J]. JOM, 2021, 73: 4009
doi: 10.1007/s11837-021-04947-w
15 Gao R, Xia L L, Zhang T, et al. Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements [J]. J. Nucl. Mater., 2014, 455: 407
doi: 10.1016/j.jnucmat.2014.07.028
16 Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion [J]. Acta Metall. Sin., 2016, 52: 1207
杨 柯, 严 伟, 王志光 等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展 [J]. 金属学报, 2016, 52: 1207
17 Song L L, Yang X Y, Zhao Y Y, et al. Si-containing 9Cr ODS steel designed for high temperature application in lead-cooled fast reactor [J]. J. Nucl. Mater., 2019, 519: 22
doi: 10.1016/j.jnucmat.2019.03.029
18 Dai Y, Boutellier V, Gavillet D, et al. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE [J]. J. Nucl. Mater., 2012, 431: 66
doi: 10.1016/j.jnucmat.2011.11.006
19 Weisenburger A, Schroer C, Jianu A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models [J]. J. Nucl. Mater., 2011, 415: 260
doi: 10.1016/j.jnucmat.2011.04.028
20 Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
21 Shi H. Alumina forming alloys (steels, high entropy materials) for the mitigation of compatibility issues with liquid metals and steam in energy related, high-temperature applications [A]. Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM) [C]. Hochschulschrift, 2020
22 Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
doi: 10.1016/j.corsci.2021.109659
23 Wu Z Y, Zhao X, Liu Y, et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600 oC [J]. J. Nucl. Mater., 2020, 539: 152280
doi: 10.1016/j.jnucmat.2020.152280
24 Wan Q, Wu Z Y, Liu Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating [J]. Corros. Sci., 2021, 183: 109264
doi: 10.1016/j.corsci.2021.109264
25 Peng X Y, Tang Y H, Ding X B, et al. Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead-bismuth eutectic alloy [J]. Int. J. Miner. Metall. Mater., 2022, 29: 2032
doi: 10.1007/s12613-022-2420-9
26 Yang J, Shi K, Zhang W, et al. A novel AlCrFeMoTi high-entropy alloy coating with a high corrosion-resistance in lead-bismuth eutectic alloy [J]. Corros. Sci., 2021, 187: 109524
doi: 10.1016/j.corsci.2021.109524
27 Wei X S, Jin J L, Jiang Z Z, et al. FeCrMoWCBY metallic glass with high corrosion resistance in molten lead–bismuth eutectic alloy [J]. Corros. Sci., 2021, 190: 109688
doi: 10.1016/j.corsci.2021.109688
28 Lu Y H, Song Y Y, Chen S H, et al. Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel [J]. Acta Metall. Sin., 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
鲁艳红, 宋元元, 陈胜虎 等. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
29 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
30 OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermal-Hydraulics and Technologies [M]. Beijing: Science Press, 2014
戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册 : 性能、材料相容性、热工水力学和技术 [M]. 北京: 科学出版社, 2014
31 Rivai A K, Takahashi M. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic [J]. Prog. Nucl. Energy, 2008, 50: 560
doi: 10.1016/j.pnucene.2007.11.081
32 Xiao Z Q, Liu J, Jiang Z Z, et al. Corrosion behavior of refractory metals in liquid lead at 1000 °C for 1000 h [J]. Nucl. Eng. Technol., 2022, 54: 1954
doi: 10.1016/j.net.2021.12.014
33 Cairang W D, Ma S Q, Gong X, et al. Oxidation mechanism of refractory Molybdenum exposed to oxygen-saturated lead-bismuth eutectic at 600 °C [J]. Corros. Sci., 2021, 179: 109132
doi: 10.1016/j.corsci.2020.109132
34 Lu Y H, Wang Z B, Song Y Y, et al. Effects of pre-formed nanostructured surface layer on oxidation behaviour of 9Cr2WVTa steel in air and liquid Pb-Bi eutectic alloy [J]. Corros. Sci., 2016, 102: 301
doi: 10.1016/j.corsci.2015.10.021
35 Zhang W H, Wang Z B, Lu K. Enhanced oxidation resistance of a reduced activation ferritic/martensitic steel in liquid Pb-Bi eutectic alloy by preforming a gradient nanostructured surface layer [J]. J. Nucl. Mater., 2018, 507: 151
doi: 10.1016/j.jnucmat.2018.04.042
36 Li C, Fang X D, Wang Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead-bismuth eutectic flow pattern [J]. Corros. Sci., 2021, 180: 109214
doi: 10.1016/j.corsci.2020.109214
37 Kikuchi K, Kurata Y, Saito S, et al. Corrosion-erosion test of SS316 in flowing Pb-Bi [J]. J. Nucl. Mater., 2003, 318: 348
doi: 10.1016/S0022-3115(03)00017-5
38 Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion–erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop [J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
39 Talaat K, Hassan M M, Cakez C, et al. Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses [J]. Nucl. Eng. Des., 2021, 385: 111522
doi: 10.1016/j.nucengdes.2021.111522
40 Schroer C, Tsisar V, Durand A, et al. Corrosion in iron and Steel T91 caused by flowing lead-bismuth eutectic at 400 ℃ and 10-7 mass% dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2019, 5: 011006
41 Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead–bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 244
doi: 10.1016/j.jnucmat.2013.09.034
42 Tsisar V, Schroer C, Wedemeyer O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2017, 494: 422
doi: 10.1016/j.jnucmat.2017.07.031
43 Kieser M, Muscher H, Weisenburger A, et al. Liquid metal corrosion/erosion investigations of structure materials in lead cooled systems: Part 1 [J]. J. Nucl. Mater., 2009, 392: 405
doi: 10.1016/j.jnucmat.2008.12.327
44 Tsisar V, Gavrilov S, Schroer C, et al. Long-term corrosion performance of T91 ferritic/martensitic steel at 400 °C in flowing Pb-Bi eutectic with 2×10-7 mass% dissolved oxygen [J]. Corros. Sci., 2020, 174: 108852
doi: 10.1016/j.corsci.2020.108852
45 Ilinc̆ev G, Kárník D, Paulovic̆ M, et al. The impact of the composition of structural steels on their corrosion stability in liquid Pb-Bi at 500 and 400 °C with different oxygen concentrations [J]. J. Nucl. Mater., 2004, 335: 210
doi: 10.1016/j.jnucmat.2004.07.015
46 Chen G, Ju N, Lei Y C, et al. Corrosion behavior of 410 stainless steel in flowing lead-bismuth eutectic alloy at 550 °C [J]. J. Nucl. Mater., 2019, 522: 168
doi: 10.1016/j.jnucmat.2019.05.029
47 Li C, Liu Y J, Zhang F F, et al. Erosion-corrosion of 304N austenitic steels in liquid Pb-Bi flow perpendicular to steel surface [J]. Mater. Charact., 2021, 175: 111054
doi: 10.1016/j.matchar.2021.111054
48 Balbaud-Célérier F, Barbier F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys [J]. J. Nucl. Mater., 2001, 289: 227.
doi: 10.1016/S0022-3115(01)00431-7
49 Balbaud-Célérier F, Terlain A. Influence of the Pb-Bi hydrodynamics on the corrosion of T91 martensitic steel and pure iron [J]. J. Nucl. Mater., 2004, 335: 204
doi: 10.1016/j.jnucmat.2004.07.009
50 Zhang J S, Li N. Analysis on liquid metal corrosion-oxidation interactions [J]. Corros. Sci., 2007, 49: 4154
doi: 10.1016/j.corsci.2007.05.012
51 Steiner H, Schroer C, Voß Z, et al. Modeling of oxidation of structural materials in LBE systems [J]. J. Nucl. Mater., 2008, 374: 211
doi: 10.1016/j.jnucmat.2007.07.022
52 Steiner H. Determination of dissolution rates of f/m steels in LBE from measured evolutions of oxide scale thickness [J]. J. Nucl. Mater., 2009, 383: 267
doi: 10.1016/j.jnucmat.2008.09.022
53 Stergar E, Eremin S G, Gavrilov S, et al. LEXUR-II-LBE an irradiation program in lead-bismuth to high dose [J]. J. Nucl. Mater., 2014, 450: 262
doi: 10.1016/j.jnucmat.2013.11.016
54 Stergar E, Eremin S G, Gavrilov S, et al. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L [J]. J. Nucl. Mater., 2016, 473: 28
doi: 10.1016/j.jnucmat.2016.02.008
55 Schmidt F, Chancey M, Kim H, et al. Continuous monitoring of pure Fe corrosion in lead-bismuth eutectic under irradiation with proton-induced X-ray emission spectroscopy [J]. JOM, 2021, 73: 4041
doi: 10.1007/s11837-021-04954-x
56 Yao C F, Wang Z G, Zhang H P, et al. HLMIF, a facility for investigating the synergistic effect of ion-irradiation and LBE corrosion [J]. J. Nucl. Mater., 2019, 523: 260
doi: 10.1016/j.jnucmat.2019.05.049
57 Yao C F, Zhang H P, Chang H L, et al. Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion [J]. Corros. Sci., 2022, 195: 109953
doi: 10.1016/j.corsci.2021.109953
[1] Shuxun Liu; Xianmin Liu; Peijie Li; Zhenning Wu. CORROSION BEHAVIOR OF HOT WORK STEEL CONTAININGHIGH Co IN LIQUID MAGNESIUM ALLOY AZ91D[J]. 中国腐蚀与防护学报, 2003, 23(2): 120-123 .
No Suggested Reading articles found!