|
|
Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor |
ZHANG Xinyi, LI Cong( ), WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei |
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China |
|
Cite this article:
ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1216-1224.
|
Abstract As a candidate of Generation IV fast reactors, Lead Fast Reactors (LFRs) have attracted global research interests for past decades. Liquid lead and lead-bismuth eutectic (LBE) are both proposed as the coolants for LFRs due to their favorable transmutation and breeding capability. However, the direct exposure to heavy liquid metals can lead to premature failures of the structural steels, such as liquid metal corrosion and liquid metal embrittlement. It has been widely proven that the corrosion performance of structural steels all depends on various environment parameters such as ambient temperature, the dissolved oxygen concentration in liquid metals, liquid flow pattern, and the co-existing irradiation. For the latter cases, liquid metal corrosion can therefore be generalized to erosion-assisted mechanical failure and irradiation damage. Here we reviewed the research progress on liquid metal corrosion issues theoretically and experimentally for LFRs. The progress can be categorized into following aspects: (1) microscopic liquid metal corrosion mechanism revealed by advanced material characterization methods as well as density functional theory, (2) development of anti-corrosion materials and surface modification techniques, (3) design of dynamic corrosion apparatus to investigate erosion-corrosion synergy in flowing liquid metals and long-term corrosion prediction modelling concerning primarily with liquid Pb/LBE loops, (4) introduction of various in-situ irradiation sources (i.e. neutrons, heavy ions and protons) to the liquid Pb/LBE corrosion apparatus to investigate the irradiation-corrosion synergistic effects.
|
Received: 30 October 2022
32134.14.1005.4537.2022.338
|
|
Fund: National Natural Science Foundation of China(12027813);National Key R&D Program of China(2022YFB1902503);Fundamental Research Funds for the Central Universities(2022MS035) |
Corresponding Authors:
LI Cong, E-mail: clever@ncepu.edu.cn
|
1 |
Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atomic Energy Sci. Technol., 2020, 54: 1638
|
|
荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
|
2 |
Long B, Qin B, Ruan Z S, et al. Selection and main problems of fuel and structural materials for Pb-Bi cold fast reactor [A]. The Second Academic Conference on Nuclear Materials Technology Innovation [C]. Shanghai, 2019
|
|
龙 斌, 秦 博, 阮章顺 等. 铅铋冷快堆燃料与结构材料的选择及主要问题 [A]. 第二届核材料技术创新学术会议 [C]. 上海, 2019
|
3 |
Anderoglu O, Marino A, Hosemann P. Corrosion in heavy liquid metals for energy systems [J]. JOM, 2021, 73: 3998
doi: 10.1007/s11837-021-04973-8
|
4 |
Hosemann P, Frazer D, Fratoni M, et al. Materials selection for nuclear applications: Challenges and opportunities [J]. Scr. Mater., 2018, 143: 181
doi: 10.1016/j.scriptamat.2017.04.027
|
5 |
Lee S G, Shin Y H, Park J, et al. High-temperature corrosion behaviors of structural materials for lead-alloy-cooled fast reactor application [J]. Appl. Sci., 2021, 11: 2349
doi: 10.3390/app11052349
|
6 |
Odette R, Zinkle S. Structural Alloys for Nuclear Energy Applications [M]. Newnes, 2019: 240
|
7 |
Furukawa T, Müller G, Schumacher G, et al. Corrosion behavior of FBR candidate materials in stagnant Pb-Bi at elevated temperature [J]. J. Nucl. Sci. Technol., 2004, 41: 265
doi: 10.1080/18811248.2004.9715484
|
8 |
Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
|
|
徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899
doi: 10.11902/1005.4537.2020.161
|
9 |
Xu Y C, Zhang Y G, Li X Y, et al. The adsorption and dissolution properties of iron surfaces in liquid lithium and lead under a fusion environment [J]. J. Nucl. Mater., 2019, 524: 200
doi: 10.1016/j.jnucmat.2019.06.033
|
10 |
Zhou T, Gao X, Ma Z W, et al. Atomistic simulation of α-Fe(100)-lead-bismuth eutectic (LBE) solid-liquid interface [J]. J. Nucl. Mater., 2021, 555: 153107
doi: 10.1016/j.jnucmat.2021.153107
|
11 |
Lei Y W, Zhang Y G, Li X Y, et al. Simulation and experimental studies of the dissolution corrosion of 4H-SiC in liquid Pb/Bi [J]. Appl. Surf. Sci., 2022, 585: 152686
doi: 10.1016/j.apsusc.2022.152686
|
12 |
Ye Z F, Wang P, Dong H, et al. Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation [J]. Sci. Rep., 2016, 6: 35268
doi: 10.1038/srep35268
pmid: 27734928
|
13 |
Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
doi: 10.1016/j.actamat.2018.03.041
|
14 |
Hosemann P, Bai S, Bickel J, et al. Corrosion testing of additively manufactured FeCrAl alloy in LBE [J]. JOM, 2021, 73: 4009
doi: 10.1007/s11837-021-04947-w
|
15 |
Gao R, Xia L L, Zhang T, et al. Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements [J]. J. Nucl. Mater., 2014, 455: 407
doi: 10.1016/j.jnucmat.2014.07.028
|
16 |
Yang K, Yan W, Wang Z G, et al. Development of a novel structural material (SIMP steel) for nuclear equipment with balanced resistances to high temperature, radiation and liquid metal corrosion [J]. Acta Metall. Sin., 2016, 52: 1207
|
|
杨 柯, 严 伟, 王志光 等. 核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展 [J]. 金属学报, 2016, 52: 1207
|
17 |
Song L L, Yang X Y, Zhao Y Y, et al. Si-containing 9Cr ODS steel designed for high temperature application in lead-cooled fast reactor [J]. J. Nucl. Mater., 2019, 519: 22
doi: 10.1016/j.jnucmat.2019.03.029
|
18 |
Dai Y, Boutellier V, Gavillet D, et al. FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE [J]. J. Nucl. Mater., 2012, 431: 66
doi: 10.1016/j.jnucmat.2011.11.006
|
19 |
Weisenburger A, Schroer C, Jianu A, et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models [J]. J. Nucl. Mater., 2011, 415: 260
doi: 10.1016/j.jnucmat.2011.04.028
|
20 |
Shi H, Jianu A, Fetzer R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead [J]. Corros. Sci., 2021, 189: 109593
doi: 10.1016/j.corsci.2021.109593
|
21 |
Shi H. Alumina forming alloys (steels, high entropy materials) for the mitigation of compatibility issues with liquid metals and steam in energy related, high-temperature applications [A]. Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM) [C]. Hochschulschrift, 2020
|
22 |
Shi H, Fetzer R, Jianu A, et al. Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb [J]. Corros. Sci., 2021, 190: 109659
doi: 10.1016/j.corsci.2021.109659
|
23 |
Wu Z Y, Zhao X, Liu Y, et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600 oC [J]. J. Nucl. Mater., 2020, 539: 152280
doi: 10.1016/j.jnucmat.2020.152280
|
24 |
Wan Q, Wu Z Y, Liu Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating [J]. Corros. Sci., 2021, 183: 109264
doi: 10.1016/j.corsci.2021.109264
|
25 |
Peng X Y, Tang Y H, Ding X B, et al. Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead-bismuth eutectic alloy [J]. Int. J. Miner. Metall. Mater., 2022, 29: 2032
doi: 10.1007/s12613-022-2420-9
|
26 |
Yang J, Shi K, Zhang W, et al. A novel AlCrFeMoTi high-entropy alloy coating with a high corrosion-resistance in lead-bismuth eutectic alloy [J]. Corros. Sci., 2021, 187: 109524
doi: 10.1016/j.corsci.2021.109524
|
27 |
Wei X S, Jin J L, Jiang Z Z, et al. FeCrMoWCBY metallic glass with high corrosion resistance in molten lead–bismuth eutectic alloy [J]. Corros. Sci., 2021, 190: 109688
doi: 10.1016/j.corsci.2021.109688
|
28 |
Lu Y H, Song Y Y, Chen S H, et al. Effects of Al and Si on mechanical properties and corrosion resistance in liquid Pb-Bi eutectic of 9Cr2WVTa steel [J]. Acta Metall. Sin., 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
|
|
鲁艳红, 宋元元, 陈胜虎 等. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, 2016, 52: 298
doi: 10.11900/0412.1961.2015.00348
|
29 |
Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
|
30 |
OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermal-Hydraulics and Technologies [M]. Beijing: Science Press, 2014
|
|
戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册 : 性能、材料相容性、热工水力学和技术 [M]. 北京: 科学出版社, 2014
|
31 |
Rivai A K, Takahashi M. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic [J]. Prog. Nucl. Energy, 2008, 50: 560
doi: 10.1016/j.pnucene.2007.11.081
|
32 |
Xiao Z Q, Liu J, Jiang Z Z, et al. Corrosion behavior of refractory metals in liquid lead at 1000 °C for 1000 h [J]. Nucl. Eng. Technol., 2022, 54: 1954
doi: 10.1016/j.net.2021.12.014
|
33 |
Cairang W D, Ma S Q, Gong X, et al. Oxidation mechanism of refractory Molybdenum exposed to oxygen-saturated lead-bismuth eutectic at 600 °C [J]. Corros. Sci., 2021, 179: 109132
doi: 10.1016/j.corsci.2020.109132
|
34 |
Lu Y H, Wang Z B, Song Y Y, et al. Effects of pre-formed nanostructured surface layer on oxidation behaviour of 9Cr2WVTa steel in air and liquid Pb-Bi eutectic alloy [J]. Corros. Sci., 2016, 102: 301
doi: 10.1016/j.corsci.2015.10.021
|
35 |
Zhang W H, Wang Z B, Lu K. Enhanced oxidation resistance of a reduced activation ferritic/martensitic steel in liquid Pb-Bi eutectic alloy by preforming a gradient nanostructured surface layer [J]. J. Nucl. Mater., 2018, 507: 151
doi: 10.1016/j.jnucmat.2018.04.042
|
36 |
Li C, Fang X D, Wang Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead-bismuth eutectic flow pattern [J]. Corros. Sci., 2021, 180: 109214
doi: 10.1016/j.corsci.2020.109214
|
37 |
Kikuchi K, Kurata Y, Saito S, et al. Corrosion-erosion test of SS316 in flowing Pb-Bi [J]. J. Nucl. Mater., 2003, 318: 348
doi: 10.1016/S0022-3115(03)00017-5
|
38 |
Saito S, Kikuchi K, Hamaguchi D, et al. Corrosion–erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop [J]. J. Nucl. Mater., 2012, 431: 91
doi: 10.1016/j.jnucmat.2011.11.040
|
39 |
Talaat K, Hassan M M, Cakez C, et al. Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses [J]. Nucl. Eng. Des., 2021, 385: 111522
doi: 10.1016/j.nucengdes.2021.111522
|
40 |
Schroer C, Tsisar V, Durand A, et al. Corrosion in iron and Steel T91 caused by flowing lead-bismuth eutectic at 400 ℃ and 10-7 mass% dissolved oxygen [J]. J. Nucl. Eng. Rad. Sci., 2019, 5: 011006
|
41 |
Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead–bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 244
doi: 10.1016/j.jnucmat.2013.09.034
|
42 |
Tsisar V, Schroer C, Wedemeyer O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2017, 494: 422
doi: 10.1016/j.jnucmat.2017.07.031
|
43 |
Kieser M, Muscher H, Weisenburger A, et al. Liquid metal corrosion/erosion investigations of structure materials in lead cooled systems: Part 1 [J]. J. Nucl. Mater., 2009, 392: 405
doi: 10.1016/j.jnucmat.2008.12.327
|
44 |
Tsisar V, Gavrilov S, Schroer C, et al. Long-term corrosion performance of T91 ferritic/martensitic steel at 400 °C in flowing Pb-Bi eutectic with 2×10-7 mass% dissolved oxygen [J]. Corros. Sci., 2020, 174: 108852
doi: 10.1016/j.corsci.2020.108852
|
45 |
Ilinc̆ev G, Kárník D, Paulovic̆ M, et al. The impact of the composition of structural steels on their corrosion stability in liquid Pb-Bi at 500 and 400 °C with different oxygen concentrations [J]. J. Nucl. Mater., 2004, 335: 210
doi: 10.1016/j.jnucmat.2004.07.015
|
46 |
Chen G, Ju N, Lei Y C, et al. Corrosion behavior of 410 stainless steel in flowing lead-bismuth eutectic alloy at 550 °C [J]. J. Nucl. Mater., 2019, 522: 168
doi: 10.1016/j.jnucmat.2019.05.029
|
47 |
Li C, Liu Y J, Zhang F F, et al. Erosion-corrosion of 304N austenitic steels in liquid Pb-Bi flow perpendicular to steel surface [J]. Mater. Charact., 2021, 175: 111054
doi: 10.1016/j.matchar.2021.111054
|
48 |
Balbaud-Célérier F, Barbier F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys [J]. J. Nucl. Mater., 2001, 289: 227.
doi: 10.1016/S0022-3115(01)00431-7
|
49 |
Balbaud-Célérier F, Terlain A. Influence of the Pb-Bi hydrodynamics on the corrosion of T91 martensitic steel and pure iron [J]. J. Nucl. Mater., 2004, 335: 204
doi: 10.1016/j.jnucmat.2004.07.009
|
50 |
Zhang J S, Li N. Analysis on liquid metal corrosion-oxidation interactions [J]. Corros. Sci., 2007, 49: 4154
doi: 10.1016/j.corsci.2007.05.012
|
51 |
Steiner H, Schroer C, Voß Z, et al. Modeling of oxidation of structural materials in LBE systems [J]. J. Nucl. Mater., 2008, 374: 211
doi: 10.1016/j.jnucmat.2007.07.022
|
52 |
Steiner H. Determination of dissolution rates of f/m steels in LBE from measured evolutions of oxide scale thickness [J]. J. Nucl. Mater., 2009, 383: 267
doi: 10.1016/j.jnucmat.2008.09.022
|
53 |
Stergar E, Eremin S G, Gavrilov S, et al. LEXUR-II-LBE an irradiation program in lead-bismuth to high dose [J]. J. Nucl. Mater., 2014, 450: 262
doi: 10.1016/j.jnucmat.2013.11.016
|
54 |
Stergar E, Eremin S G, Gavrilov S, et al. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L [J]. J. Nucl. Mater., 2016, 473: 28
doi: 10.1016/j.jnucmat.2016.02.008
|
55 |
Schmidt F, Chancey M, Kim H, et al. Continuous monitoring of pure Fe corrosion in lead-bismuth eutectic under irradiation with proton-induced X-ray emission spectroscopy [J]. JOM, 2021, 73: 4041
doi: 10.1007/s11837-021-04954-x
|
56 |
Yao C F, Wang Z G, Zhang H P, et al. HLMIF, a facility for investigating the synergistic effect of ion-irradiation and LBE corrosion [J]. J. Nucl. Mater., 2019, 523: 260
doi: 10.1016/j.jnucmat.2019.05.049
|
57 |
Yao C F, Zhang H P, Chang H L, et al. Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion [J]. Corros. Sci., 2022, 195: 109953
doi: 10.1016/j.corsci.2021.109953
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|