Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 312-320    DOI: 10.11902/1005.4537.2022.099
Current Issue | Archive | Adv Search |
Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline
JIANG Fangfang1, YUN Hong1(), PENG Li2, ZHANG Yihao1, LI Weishun1, DAI Wenjing1, WANG Baofeng1, XU Qunjie1
1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, College of Environmental and Chemical Engineering, Shanghai 200090, China
2.Technical Center for Mechanical and Electrical Product Inspection and Testing of Shanghai Customs, Shanghai 200135, China
Download:  HTML  PDF(9747KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Different kinds of NiFe-LDH/polyaniline (PANI) composite coatings were prepared on the surface of 304 stainless steel by hydrothermal method coupled with in-situ polymerization method. The surface morphology and structure of the prepared LDH coatings were investigated by scanning electron microscope (SEM), energy dispersive spectroscope (EDS), X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FT-IR) and X-ray photoelectron spectroscope (XPS). While the anti-corrosive performance of the coatings was characterized by means of polarization curve measurement and electrochemical impedance spectroscope, and the corrosion mechanism was discussed. The results showed that the composite LDH coatings with lamellar structure may be acquired by adding Fe(NO3)3. Then, its surface structure was further optimized by modification with PANI. There was a chemical bond between PANI and LDH, and the synergistic effect of them could improve the comprehensive performance of the composite coating. During 168 h immersion in 1 mol/L H2SO4 solution, NiFe-LDH/PANI composite coating exhibited good chemical stability, which implied that the coating could provide excellent physical shielding and anodic protection for 304 stainless steel.

Key words:  polyaniline      layered double hydroxide      anti-corrosive      304 stainless steel     
Received:  09 April 2022      32134.14.1005.4537.2022.099
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(21972090);National Natural Science Foundation of China(22075173)
About author:  YUN Hong, E-mail: yunhong@shiep.edu.cn

Cite this article: 

JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 312-320.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.099     OR     https://www.jcscp.org/EN/Y2023/V43/I2/312

Fig.1  SEM surface images (a, c, e, f) of NiFe-LDH (a), NiFe(s)-LDH (c), NiFe-LDH/PANI (e) and NiFe(s)-LDH/PANI (f) coatings on 304 stainless steel, and EDS element mappings of NiFe-LDH (b) and NiFe(s)-LDH (d) coatings
Fig.2  XRD patterns of the PANI, NiFe(s)-LDH, NiFe-LDH, NiFe(s)-LDH/PANI and NiFe-LDH/PANI coatings on 304 strainless steel
Fig.3  FT-IR spectroscopies of the as-prepared coatings on 304 strainless steel
Fig.4  Microscope images of NiFe(s)-LDH (a), NiFe-LDH (b), NiFe(s)-LDH/PANI (c) and NiFe-LDH/PANI (d) coatings on 304 strainless steel after adhesion test
Fig.5  Potential polarization curves of the 304 strainless steel samples with different coatings in 1 mol/L H2SO4 solution
Fig.6  Nyquist plots (a) of the 304 strainless steel samples with different coatings in 1 mol/L H2SO4 solution, and equivalent circuits for NiFe(s)-LDH and NiFe-LDH coatings (b) and NiFe(s)-LDH/PANI and NiFe-LDH/PANI coatings (c)
SampleTime / hCPEf / Ω-1·cm-2·S-nRf / Ω·cm2CPEdl / Ω-1·cm-2·S-nRct / Ω·cm2T / Ω-1·cm-2·S-0.5t / S-0.5
NiFe(s)-LDH24.89×10-51.5666.23×10-525.90------
NiFe-LDH0------4.08×10-54.36×105------
2------4.32×10-53.39×106------
8------4.42×10-51.98×106------
244.27×10-5422.53.31×10-51.90×105------
365.63×10-5400.05.78×10-59.31×104------
724.85×10-5413.62.00×10-44.55×104------
1682.60×10-5438.41.82×10-47.59×104------
NiFe(s)-LDH/PANI04.59×10-5162.3------0.9061.873
26.08×10-5183.1------0.8141.574
81.35×10-4175.3------0.1081.295
242.14×10-4224.4------0.1091.081
363.46×10-4190.4------0.1280.827
NiFe-LDH/PANI03.01×10-543.2------0.4772.764
23.95×10-532.6------0.3862.690
83.95×10-532.6------0.2541.533
244.33×10-529.9------0.2091.308
364.62×10-534.7------0.2211.213
725.15×10-539.4------0.1951.101
1685.23×10-539.1------0.1860.935
Table 1  Fitting parameters of electrochemical impedance spectroscopies of four coatings immersed in 1 mol/L H2SO4 solution for different time
Fig.7  Nyquist diagrams of different coatings immersed in 1 mol/L H2SO4 solution for different durations (a-d) and equivalent circuit diagram (e)
Fig.8  XPS survey spectra of various coatings (a), and fine spectra of N 1s (b), C 1s (c) and O 1s (d) for PANI, NiFe-LDH/PANI and NiFe(s)-LDH/PANI coatings, and Fe 2p (e) for NiFe-LDH and NiFe-LDH/PANI coatings
[1] Zhu Y X, Song G L, Wu P P, et al. A protective superhydrophobic Mg-Zn-Al LDH film on surface-alloyed magnesium [J]. J. Alloy. Compd., 2021, 855: 157550
doi: 10.1016/j.jallcom.2020.157550
[2] He Q Q, Zhou M J, Hu J M. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys [J]. Electrochim. Acta, 2020, 355: 136796
doi: 10.1016/j.electacta.2020.136796
[3] Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
(刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16)
[4] Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
(王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335)
[5] Cao Y H, Zheng D J, Zhang F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review [J]. J. Mater. Sci. Technol., 2022, 102: 232
doi: 10.1016/j.jmst.2021.05.078
[6] Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
doi: 10.1016/j.corsci.2021.109941
[7] Hu Y L, Wu Z, Zheng X T, et al. ZnO/ZnGaNO heterostructure with enhanced photocatalytic properties prepared from a LDH precursor using a coprecipitation method [J]. J. Alloy. Compd., 2017, 709: 42
doi: 10.1016/j.jallcom.2017.02.124
[8] Chen J F, Lin W X, Liang S Y, et al. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy [J]. Appl. Surf. Sci., 2019, 463: 535
doi: 10.1016/j.apsusc.2018.08.242
[9] Wang L D, Zong Q F, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 256
doi: 10.1016/j.corsci.2015.01.033
[10] Wen T T, Yan R, Wang N, et al. PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy [J]. Surf. Coat. Technol., 2020, 383: 125255
doi: 10.1016/j.surfcoat.2019.125255
[11] Tang Y, Wu F, Fang L, et al. A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys [J]. Surf. Coat. Technol., 2019, 358: 594
doi: 10.1016/j.surfcoat.2018.11.070
[12] Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
[13] Song Y L, Wang H Y, Liu Q, et al. Sodium dodecyl sulfate (SDS) intercalated Mg-Al layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2021, 422: 127524
doi: 10.1016/j.surfcoat.2021.127524
[14] Alibakhshi E, Ghasemi E, Mahdavian M, et al. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al- layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat [J]. Corros. Sci., 2017, 115: 159
doi: 10.1016/j.corsci.2016.12.001
[15] Ye H L. Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in portland cement-metakaolin-dolomite blends [J]. Cem. Concr. Res., 2021, 139: 106267
doi: 10.1016/j.cemconres.2020.106267
[16] Rodriguez J, Bollen E, Nguyen T D, et al. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel [J]. Prog. Org. Coat., 2020, 149: 105894
[17] Tabish M, Zhao J M, Wang J B, et al. Improving the corrosion protection ability of epoxy coating using CaAl LDH intercalated with 2-mercaptobenzothiazole as a pigment on steel substrate [J]. Prog. Org. Coat., 2022, 165: 106765
[18] Wu H S, Shen G Z, Li R X, et al. The growth behavior and properties of orientated LDH film composited with reduced graphene oxide [J]. Surf. Coat. Technol., 2022, 436: 128261
doi: 10.1016/j.surfcoat.2022.128261
[19] Su Y, Qiu S H, Wei J Y, et al. Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings [J]. Chem. Eng. J., 2021, 426: 131269
doi: 10.1016/j.cej.2021.131269
[20] Bai C H, Sun S G, Xu Y Q, et al. Facile one-step synthesis of nanocomposite based on carbon nanotubes and nickel-aluminum layered double hydroxides with high cycling stability for supercapacitors [J]. J. Colloid Interface Sci., 2016, 480: 57
doi: 10.1016/j.jcis.2016.07.001
[21] Pancrecious J K, Vineetha S V, Bill U S, et al. Ni-Al polyvanadate layered double hydroxide with nanoceria decoration for enhanced corrosion protection of aluminium alloy [J]. Appl. Clay Sci., 2021, 211: 106199
doi: 10.1016/j.clay.2021.106199
[22] Zhou P, Xu J X, Yu L. Inhibitive effect of SiO2@ NO2 - intercalated MgAl-LDH nanocomposite on steel in Cl- contaminated saturated Ca(OH)2 solution [J]. Corros. Sci., 2022, 195: 109997
doi: 10.1016/j.corsci.2021.109997
[23] Lee Y, Cha J H, Jung D Y. Selective lithium adsorption of silicon oxide coated lithium aluminum layered double hydroxide nanocrystals and their regeneration [J]. Chem. Asian J., 2021, 16: 974
doi: 10.1002/asia.202100126
[24] Wu H, Shi Z, Zhang X M, et al. Achieving an acid resistant surface on magnesium alloy via bio-inspired design [J]. Appl. Surf. Sci., 2019, 478: 150
doi: 10.1016/j.apsusc.2019.01.181
[25] Liu A, Ju X D, Tian H W, et al. Direct synthesis of layered double hydroxides monolayer nanosheets for co-assembly of nanobrick wall hybrid film with excellent corrosion resistance [J]. Appl. Surf. Sci., 2019, 493: 239
doi: 10.1016/j.apsusc.2019.06.295
[26] Schindelholz E J, Spoerke E D, Nguyen H D, et al. Extraordinary corrosion protection from polymer-clay nanobrick wall thin films [J]. ACS Appl. Mater. Interfaces, 2018, 10: 21799
doi: 10.1021/acsami.8b05865
[27] Zhou K Q, Gui Z, Hu Y. Facile synthesis of LDH nanoplates as reinforcing agents in PVA nanocomposites [J]. Polym. Adv. Technol., 2017, 28: 386
doi: 10.1002/pat.3900
[28] Gao Y Z, Syed J A, Lu H B, et al. Anti-corrosive performance of electropolymerized phosphomolybdic acid doped PANI coating on 304SS [J]. Appl. Surf. Sci., 2016, 360: 389
doi: 10.1016/j.apsusc.2015.11.029
[29] Jiang L, Syed J A, Gao Y Z, et al. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates [J]. Appl. Surf. Sci., 2017, 426: 87
doi: 10.1016/j.apsusc.2017.07.077
[30] Cao X, Zeng H Y, Xu S, et al. Facile fabrication of the polyaniline/layered double hydroxide nanosheet composite for supercapacitors [J]. Appl. Clay Sci., 2019, 168: 175
doi: 10.1016/j.clay.2018.11.011
[31] Hu J L, Gan M Y, Ma L, et al. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites [J]. Appl. Surf. Sci., 2015, 328: 325
doi: 10.1016/j.apsusc.2014.12.042
[32] Sun M, Ma Z D, Li A H, et al. Anticorrosive performance of polyaniline/waterborne epoxy/poly (methylhydrosiloxane) composite coatings [J]. Prog. Org. Coat., 2020, 139: 105462
[33] Caldona E B, de Leon A C C, Pajarito B B, et al. Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites [J]. Appl. Surf. Sci., 2017, 422: 162
doi: 10.1016/j.apsusc.2017.05.083
[34] Feng Y H, Ma R G, Wang M M, et al. Crystallinity effect of NiFe LDH on the growth of Pt nanoparticles and hydrogen evolution performance [J]. J. Phys. Chem. Lett., 2021, 12: 7221
doi: 10.1021/acs.jpclett.1c02095
[35] Wang W, Liu Y C, Li J, et al. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst [J]. J. Mater. Chem., 2018, 6A: 14299
[36] Zhang L, Zhang R, Ge R X, et al. Facilitating active species generation by amorphous NiFe-Bi layer formation on NiFe-LDH nanoarray for efficient electrocatalytic oxygen evolution at alkaline pH [J]. Chem. Eur. J, 2017, 23: 11499
doi: 10.1002/chem.201702745
[37] Li H, Li F, Yu J G, et al. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction [J]. Acta Phys.-Chim. Sin., 2021, 37: 2010073
(李瀚, 李芳, 余家国 等. 二维/二维FeNi-LDH/g-C3N4复合光催化剂用于促进CO2光还原反应 [J]. 物理化学学报, 2021, 37: 2010073)
[38] Wang M X, Yun H, Tan K Q, et al. One-step electrochemical synthesis of poly (vinyl pyrrolidone) modified polyaniline coating on stainless steel for high corrosion protection performance [J]. Prog. Org. Coat., 2020, 149: 105908
[39] Lin Y C, Zhong X X, Huang H X, et al. Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor [J]. Acta Phys. -Chim. Sin., 2016, 32: 474
doi: 10.3866/PKU.WHXB201511104
[40] Jiang D B, Jing C, Yuan Y S, et al. 2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance [J]. J. Colloid Interface Sci., 2019, 540: 398
doi: 10.1016/j.jcis.2019.01.022
[41] Shi J M, Liu X R, Bai X F. Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH [J]. Fuel, 2021, 306: 121688
doi: 10.1016/j.fuel.2021.121688
[42] Cai H P, Feng C C, Xiao H B, et al. Synthesis of Fe3O4/rGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties [J]. J. Alloy. Compd., 2022, 893: 162227
doi: 10.1016/j.jallcom.2021.162227
[43] Huang H, Abbas S C, Deng Q D, et al. An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers [J]. J. Power Sources, 2021, 498: 229886
doi: 10.1016/j.jpowsour.2021.229886
[44] Meng F Y, Yu Y, Sun D F, et al. Three-dimensional needle branch-like PANI/CoNiP hybrid electrocatalysts for hydrogen evolution reaction in acid media [J]. ACS Appl. Energy Mater., 2021, 4: 2471
doi: 10.1021/acsaem.0c03033
[45] Yao Y C, Sun H, Zhang Y L, et al. Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers [J]. Prog. Org. Coat., 2020, 139: 105470
[46] Wang Y L, Zhang S H, Wang P, et al. Electropolymerization and corrosion protection performance of the Nb:TiO2 nanofibers/polyaniline composite coating [J]. J. Taiwan Inst. Chem. Eng., 2019, 103: 190
doi: 10.1016/j.jtice.2019.07.015
[47] Xu H H, Zhu S D, Xia M Z, et al. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study [J]. J. Hazard. Mater., 2021, 402: 123815
doi: 10.1016/j.jhazmat.2020.123815
[48] Hou P C, Xing G J, Tian L Y, et al. Hollow carbon spheres/graphene hybrid aerogels as high-performance adsorbents for organic pollution [J]. Sep. Purif. Technol., 2019, 213: 524
doi: 10.1016/j.seppur.2018.12.032
[49] Lu C Y, Rooney D W, Jiang X, et al. Achieving high specific capacity of lithium-ion battery cathodes by modification with “N-O˙” radicals and oxygen-containing functional groups [J]. J. Mater. Chem., 2017, 5A: 24636
[1] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[3] CHEN Yifan, MENG Fandi, QU Youyi, FANG Zhiqing, LIU Li, WANG Fuhui. One-step Synthesis of Superhydrophobic Polyaniline Capsules and Its Effect on Corrosion Resistance of Organic Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[4] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[5] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[6] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[7] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[8] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[9] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[10] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[11] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[12] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[13] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[15] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
No Suggested Reading articles found!