Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 271-279    DOI: 10.11902/1005.4537.2022.069
Current Issue | Archive | Adv Search |
Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy
HE Nankai1,2, WANG Yongxin1(), ZHOU Shengguo2, ZHOU Dapeng1, LI Jinlong1
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download:  HTML  PDF(16255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of Inconel 718 alloy in flowing water vapor and the wear performance in atmosphere of 60% relative humidity at 580 ℃ were investigated respectively via tubular furnace with an adjustable steam supply unit and a ball-disc type high temperature friction and wear tester. The results showed that the oxidation kinetic curves of Inconel 718 alloy in flowing water vapor at 580 ℃ followed a double linear law approximately. In comparison to those formed in dry air, the oxidation products formed in high-temperature water vapor were coarse with network-like cracks. However, the composition of oxidation products formed in water vapor and dry air were more or less the same, which all composed mainly of NiFe2O4 and small amount of NiO, Cr2O3, and Fe2O3. Beneath the oxide scale, a Cr-depletion region was found. On the other hand, the friction coefficient of Inconel 718 alloy decreased at 580 ℃ with the increase of friction load, while the wear rate increased gradually. The wear mechanism of Inconel 718 alloy by 2 N was mainly adhesive wear, while the wear mechanism was mainly fatigue wear and abrasive wear above 5 N.

Key words:  Inconel 718 alloy      pure water vapor      high-temperature oxidation      high-temperature friction      wear mechanism     
Received:  11 March 2022      32134.14.1005.4537.2022.069
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2020YFB2010401);Youth Innovation Promotion Association CAS(2018336)
About author:  WANG Yongxin, E-mail: yxwang@nimte.ac.cn

Cite this article: 

HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 271-279.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.069     OR     https://www.jcscp.org/EN/Y2023/V43/I2/271

Fig.1  Surface macro-morphologies (a, c) and oxidation kinetic curves (b, d) of Inconel 718 alloy oxidized for different time in dry air (a, b) and water vapor (c, d)
Fig.2  Surface (a, c, e) and cross-sectional (b, d, f) morphologies of Inconel 718 alloy before (a, b) and after oxidation for 168 h at 580 ℃ in dry air (c, d) and water vapor (e, f)
Fig.3  Cross-sectional morphologies and EDS elemental mappings of Inconel 718 alloy before (a) and after oxidation for 168 h at 580 ℃ in dry air (b) and water vapor (c)
Fig.4  Raman patterns of Inconel 718 alloy oxidized for 168 h at 580 ℃ in dry air (a) and water vapor (b)
Fig.5  Schematic diagram of the oxidation mechanism of Inconel 718 alloy in high-temperature water vapor
Fig.6  Coefficient of friction (a) and wear rate (b) of Inconel 718 alloy at different loads
Fig.7  Morphologies of wear tracks (a1-d1) and wear scars (a2-d2), 3D (a3-d3) and 2D (a4-d4) profiles of wear tracks of Inconel 718 alloy at 2 N (a1-a4); 5N (b1-b4); 8N (c1-c4); 10N (d1-d4) loads
Fig.8  Morphologies of wear tracks (a, c, e, g) and wear debris (b, d, f, h) of Inconel 718 alloy at different loads
SpectrumOAlCrFeNiNbMo
19.080.3218.0017.0247.714.902.96
217.280.3816.1216.3743.093.982.78
315.320.4818.4915.2542.015.263.19
422.630.5416.0314.7539.344.022.69
Table 1  Distribution of primary elements on the wear track surface of Inconel 718 alloy under different loads (mass fraction / %)
[1] Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
(焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
[2] Liu H L, Liu X H, Ji L, et al. Wide temperature range tribological property of inconel 718 high-temperature alloy [J]. Tribology, 2018, 38: 274
(刘红利, 刘晓红, 吉利 等. 高温氧化处理前后Inconel 718高温合金摩擦学性能的探究 [J]. 摩擦学学报, 2018, 38: 274)
[3] Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
(张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9)
[4] Li S H, Ba J Z, Jiang Y X, et al. A research progress of high temperature oxidation behaviors in IN 718 [J]. Chem. Def. Ships, 2008, (2): 8
(李少华, 巴俊洲, 蒋亚雄 等. IN718合金高温氧化行为的研究进展 [J]. 舰船防化, 2008, (2): 8)
[5] Deng W K, Xu J H, Jiang L. Thermo-mechanical fatigue behavior of Inconel 718 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 983
(邓文凯, 徐睛昊, 江亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019, 29: 983)
[6] Lou X M, Sun W R, Guo S R, et al. Hot Corrosion Behavior of IN 718 alloy and its effect on mechanical properties [J]. Rare Met. Mater. Eng., 2008, 37: 259
(娄学明, 孙文儒, 郭守仁 等. IN718高温合金热腐蚀行为及其对力学性能的影响 [J]. 稀有金属材料与工程, 2008, 37: 259)
[7] Geng Y X, Dong X, Wang K D, et al. Effect of microstructure evolution and phase precipitations on hot corrosion behavior of IN718 alloy subjected to multiple laser shock peening [J]. Surf. Coat. Technol., 2019, 370: 244
doi: 10.1016/j.surfcoat.2019.04.060
[8] Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
(夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697)
[9] Cui T C, Leng W C, Zhou D P, et al. Improved hot corrosion resistance of Al-gradient NiSiAlY coatings at 750 ℃ by pre-oxidation [J]. Surf. Coat. Technol., 2021, 417: 127
[10] Li R Z, Wang S H, Zhou D P, et al. A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C [J]. Corros. Sci., 2020, 174: 108794
doi: 10.1016/j.corsci.2020.108794
[11] Sha C H, Zhou Z F, Xie Z H, et al. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance [J]. Appl. Surf. Sci., 2020, 507: 145101
doi: 10.1016/j.apsusc.2019.145101
[12] Pradhan D, Shankar Mahobia G, Chattopadhyay K, et al. Salt induced corrosion behaviour of superalloy IN718 [J]. Mater. Today Proc., 2018, 5: 7047
[13] Fang X D, Liu X, Xu F H, et al. Oxidation behavior in supercritical water of domestic austenitic steel C-HRA-5 for uultra-supercritical power stations [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 266
(方旭东, 刘晓, 徐芳泓 等. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 266)
[14] Xie D B, Zhou Y Y, Lu J T, et al. Effect of Cr content on oxidation of Ni-based alloy in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 358
(谢冬柏, 周游宇, 鲁金涛 等. Cr对镍基合金在超临界水中氧化行为的影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 358)
[15] Grosvenor A P, Kobe B A, McIntyre N S. Activation energies for the oxidation of iron by oxygen gas and water vapour [J]. Surf. Sci., 2005, 574: 317
doi: 10.1016/j.susc.2004.10.043
[16] Berthod P, Aranda L, Mathieu S, et al. Influence of water vapour on the rate of oxidation of a Ni-25wt.%Cr alloy at high temperature [J]. Oxid. Met., 2013, 79: 517
doi: 10.1007/s11085-012-9339-x
[17] Kurzynowski T, Smolina I, Kobiela K, et al. Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium [J]. Mater. Des., 2017, 132: 349
doi: 10.1016/j.matdes.2017.07.024
[18] Renderos M, Torregaray A, Gutierrez-orrantia M E, et al. Microstructure characterization of recycled IN718 powder and resulting laser clad material [J]. Mater. Characterizat., 2017, 134: 103
[19] Guo Y A, Li B S, Lai W H, et al. Oxidation behavior of ni-based superalloy K444 at 900 ℃ in air during long term [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 285
(郭永安, 李柏松, 赖万慧 等. 铸造镍基合金K444在900 ℃空气中的长期氧化行为 [J]. 中国腐蚀与防护学报, 2012, 32: 285)
[20] Sun W, Tan A W Y, King D J Y, et al. Tribological behavior of cold sprayed Inconel 718 coatings at room and elevated temperatures [J]. Surf. Coat. Technol., 2020, 385: 125386
doi: 10.1016/j.surfcoat.2020.125386
[21] Bayan E M, Storozhenko V Y, Bunin M A. Low-temperature solid-phase pyrolysis: A new method for the synthesis of nanocrystalline NiFe2O4 thin films [J]. Mater. Lett., 2021, 302: 130385
doi: 10.1016/j.matlet.2021.130385
[22] Xing L L, Zheng Y J, Cui L S, et al. Progress of water vapour effect on growth of alumina forming alloys [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 409
(邢琳琳, 郑雁军, 崔立山 等. 水蒸汽影响氧化铝膜生长的研究新进展 [J]. 中国腐蚀与防护学报, 2011, 31: 409)
[23] Guillou S, Cabet C, Desgranges C, et al. Influence of hydrogen and water vapour on the kinetics of chromium oxide growth at high temperature [J]. Oxid. Met., 2011, 76: 193
doi: 10.1007/s11085-011-9246-6
[24] Xu Z B, Huang Z Y, Zhang J, et al. Tribological behaviors and microstructure evolution of Inconel 718 superalloy at mid-high temperature [J]. J. Mater. Res. Technol., 2021, 14: 2174
doi: 10.1016/j.jmrt.2021.07.102
[25] Wang Y X, Wang Y X, Chen C L, et al. Preparation of Zr/[Al(Si) N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345
(王永欣, 汪艺璇, 陈春林 等. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性 [J]. 中国腐蚀与防护学报, 2022, 42: 345)
[26] Fang Y, Fan H Z, Zhang Y S, et al. Preparation and tribological performance of three-dimensional lubricating layer on the surface of Al2O3/Mo self-lubricating structural ceramics [J]. Tribology, 2017, 37: 395
(方媛, 樊恒中, 张永胜 等. 氧化铝/钼自润滑结构陶瓷表面三维复合润滑层的制备与摩擦学性能研究 [J]. 摩擦学学报, 2017, 37: 395)
[27] Guo H X, Liu Z Y, Wang Y X, et al. Tribological mechanism of micro-arc oxidation coatings prepared by different electrolyte systems in artificial seawater [J]. Ceram. Int., 2021, 47: 7344
doi: 10.1016/j.ceramint.2020.11.169
[28] Wang Y X, Wang L P, Li J L, et al. Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water [J]. Tribol. Int., 2013, 60: 147
doi: 10.1016/j.triboint.2012.11.014
[29] Wang L P, Wang Y X, Wang Y F, et al. Tribological performances of non-hydrogenated amorphous carbon coupling with different coating counterparts in ambient air and water [J]. Wear, 2013, 300: 20
doi: 10.1016/j.wear.2013.01.093
[1] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[3] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[4] YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[5] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[6] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[8] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[9] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[10] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[11] Yong Shen. High-Temperature Oxidation Resistance of High-Nb TiAl-Based Alloy[J]. 中国腐蚀与防护学报, 2004, 24(4): 203-207 .
[12] Zhirong Huang; Hong Xv; Peining Li. THE OXIDATION BEHAVIOR OF ALUMINIZEDHK40 STEEL COATED WITH Y2O3 THIN FILM[J]. 中国腐蚀与防护学报, 2003, 23(2): 124-128 .
[13] Mingkai Lei; Fujun Yang; Peng Luo; Xiaopeng Zhu. MODELING OF CYCLIC OXIDATION KINETIC FOR HIGH-TEMPERATURE ALLOYS BASED ON BUCKLING SPALLATION OF OXIDE SCALE[J]. 中国腐蚀与防护学报, 2002, 22(2): 65-68 .
No Suggested Reading articles found!