Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 724-732    DOI: 10.11902/1005.4537.2021.260
Current Issue | Archive | Adv Search |
Effect of Dissolved Oxygen and Flow Rate of Seawater on Film Formation of B30 Cu-Ni Alloy
CHEN Hanlin1, MA Li2, HUANG Guosheng2, DU Min1()
1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
Download:  HTML  PDF(7150KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B30 Cu-Ni alloy was widely used in the manufacture of marine condenser because of its excellent characteristics, but there was still a serious pitting problem in the actual working conditions. Because the corrosion resistance of B30 Cu-Ni alloy was related to the protective film formed on its surface, therefore, it is worthy to clarify the influence factors for the passivation film formation of B30 Cu-Ni alloy in an artificial seawater. Hence this article aims to examine the effect of dissolved oxygen and flow rate of the seawater on the film formation by means of electrochemical measurement and surface observation methods, so that the optimal conditions for the film formation were determined. The results showed that the protective property of the surface film increased with the increase of dissolved oxygen concentration (DO) in the seawater. In the range of flow rate of 0-2.0 m/s, with the increase of flow rate, the quality of the formed film first became better and then worse. The film formed on B30 Cu-Ni alloy was the most compact and complete when the flow rate was about 0.8 m/s. Dissolved oxygen affected the quality of film formation by varying the reaction process of film formation. The flow velocity affected the film formation by changing the dissolved oxygen concentration around the sample and producing a scouring effect. The increase of dissolved oxygen concentration was conducive to the formation of the film, while the scouring effect of seawater would destroy the formed film.

Key words:  B30 Cu-Ni alloy      film formation      flow rate      dissolved oxygen     
Received:  27 September 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U1706221)
Corresponding Authors:  DU Min     E-mail:  ssdm99@ouc.edu.cn
About author:  DU Min, E-mail: ssdm99@ouc.edu.cn

Cite this article: 

CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effect of Dissolved Oxygen and Flow Rate of Seawater on Film Formation of B30 Cu-Ni Alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 724-732.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.260     OR     https://www.jcscp.org/EN/Y2022/V42/I5/724

Fig.1  Open circuit potentials of B30 Cu-Ni alloy in seawater with the different concentrations of dissolved oxygen
Fig.2  EIS diagrams of B30 Cu-Ni alloy in seawater containing 3.5 mg/kg (a1, a2), 8.0 mg/kg (b1, b2) and 14.0 mg/kg (c1, c2) dissolved oxygen
Fig.3  Equivalent circuit diagrams of EIS of B30 Cu-Ni alloy immersed for 1-5 d in seawater containing 3.5 mg/kg DO (a) and under other conditions (b)
DO / mg·kg-1T / dRct / kΩ·cm2ndlRf / kΩ·cm2nf
3.5184940.84------
579700.84------
11309590.8110.70.71
15217510.7814.30.68
19268380.8118.80.66
8.0198290.9530.90.82
5117960.847.30.84
11112440.739.40.73
151433200.8420.40.76
19182370.8513.90.78
14.011411400.63899.10.77
5438970.917.00.87
115049100.702846.00.80
1526284000.6310547.00.80
1919479000.6814675.00.82
Table 1  Fitting parameters of EIS of B30 Cu-Ni alloy in seawater with the different concentrations of dissolved oxygen
ElementCompoundDO / mg·kg-1
3.58.014.0
CuCuO, CuCl294.0491.4421.14
Cu2O, CuCl5.968.5678.86
ClCuCl237.0131.7337.23
CuCl62.9968.2762.77
Table 2  Contents of the formed compounds detected by XPS on B30 Cu-Ni alloy immersed in seawater with the different concentrations of dissolved oxygen (mass fraction / %)
Flow rate / m·s-1T / dRct / kΩ·cm2ndlRf / kΩ·cm2nf
0198290.9530.90.82
5117960.847.30.84
11112440.739.40.73
151433200.8420.40.76
19182370.8513.90.78
0.8183100.66628.00.90
536420.67365.00.88
1185680.96943.00.85
1524955000.922109.00.77
1930445000.7811902.00.80
2.01138320.59638.00.91
548520.661678.00.84
11304110.6814544.00.74
15734940.6015915.00.74
191038800.6630635.00.72
Table 3  Fitting results of EIS of B30 Cu-Ni alloy in seawater with the different flow rates
Fig.4  SEM images of B30 Cu-Ni alloy immersed for 20 d in seawater containing 3.5 mg/kg (a), 8.0 mg/kg (b) and 14.0 mg/kg (c) DO
Fig.5  Open circuit potentials of B30 Cu-Ni alloy in seawater with the different flow rates
Fig.6  EIS diagrams of B30 Cu-Ni alloy in seawater with the flow rates of 0 m/s (a1, a2), 0.8 m/s (b1, b2) and 2.0 m/s (c1, c2)
ElementCompoundFlow rate / m·s-1
00.82.0
CuCuO, CuCl291.4434.4618.47
Cu2O, CuCl8.5665.5481.53
ClCuCl231.7341.2839.29
CuCl68.2758.7260.71
Table 4  Fitting results of XPS of B30 Cu-Ni alloy in seawater with the different flow rates (mass fraction / %)
Fig.7  SEM images of B30 Cu-Ni alloy immersed for 20 d in seawater with the flow rates of 0 m/s (a), 0.8 m/s (b) and 2.0 m/s (c)
1 Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
石泽耀, 刘斌, 刘岩 等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
2 Zhu X L, Lin L Y, Lei T Q. Process of formation of corrosion films on alloy 70Cu-30Ni in seawater [J]. Acta Metall. Sin., 1997, 33: 1256
朱小龙, 林乐耘, 雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程 [J]. 金属学报, 1997, 33: 1256
3 Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid [J]. Corros. Sci., 2004, 46: 1969
doi: 10.1016/j.corsci.2003.10.017
4 Glover T J. Copper-Nickel alloy for the construction of ship and boat hulls [J]. Br. Corros. J., 1982, 17: 155
doi: 10.1179/000705982798274228
5 Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Mater. Des., 2009, 30: 2425
doi: 10.1016/j.matdes.2008.10.015
6 Lin L Y, Liu S F, Zhu X L. Seawater-corrosion-induced intergranular precipitation in Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 1
林乐耘, 刘少峰, 朱小龙. 海水腐蚀导致铜镍合金的沿晶析出 [J]. 中国腐蚀与防护学报, 1997, 17: 1
7 Shen H, Gao F, Zhang G G, et al. Material selection and anti-corrosion measures of seawater piping in warship [J]. Ship Eng., 2002, 32(4): 43
沈宏, 高峰, 张关根 等. 舰船海水管系选材及防腐对策 [J]. 船舶工程, 2002, 32(4): 43
8 Ravindranath K, Tanoli N, Gopal H. Failure investigation of brass heat exchanger tube [J]. Eng. Fail. Anal., 2012, 26: 332
doi: 10.1016/j.engfailanal.2012.07.018
9 Yan Y M, Lin L Y, Zhu X L. Effect of residual stress on corrosion resistance of copper tube BFe30-1-1 in 3.5%NaCl [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 59
严宇民, 林乐耘, 朱小龙. 残余应力对BFe30-1-1铜管耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1994, 14: 59
10 Admiraal L, Ijsseling F P, Kolster B H, et al. Influence of temperature on corrosion product film formation on CuNi10Fe in the low temperature range: part 2: Studies on corrosion product film formation and properties in relation to microstructure and iron content [J]. Br. Corros. J., 1986, 21: 33
doi: 10.1179/000705986798272451
11 Hack H P. Role of the corrosion product film in the corrosion protection Cu-Ni alloys in saltwater [D]. State College: Pennsylvania State University, 1987
12 Zhang Z, Yao L A, Gan F X. Effect of surface film on electrochemical behavior of Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
张哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
13 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
白苗苗, 白子恒, 蒋立 等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
14 Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
15 Syrett B C, Macdonald D D, Wing S S. Corrosion of copper-nickel alloys in sea water polluted with sulfide and sulfide oxidation products [J]. Corrosion, 1979, 35: 409
doi: 10.5006/0010-9312-35.9.409
16 Wang Y Z, Beccaria A M, Poggi G. The effect of temperature on the corrosion behaviour of a 70/30 Cu-Ni commercial alloy in seawater [J]. Corros. Sci., 1994, 36: 1277
doi: 10.1016/0010-938X(94)90181-3
17 Yang F, Zheng Y G, Yao Z M, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 16
杨帆, 郑玉贵, 姚治铭 等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为 [J]. 中国腐蚀与防护学报, 1999, 19: 16
18 Wang J H, Jiang X X, Li S Z. Microstructure and corrosion behavior of 70Cu-30Ni welded pipe [J]. Trans. Nonferrous Met. Soc. China, 1995, 5: 88
19 Macdonald D D, Syrett B C, Wing S S. The corrosion of copper-nickel alloys 706 and 715 in flowing sea water. I-effect of oxygen [J]. Corrosion, 1978, 34: 289
doi: 10.5006/0010-9312-34.9.289
20 Ekerenam O O, Ma A L, Zheng Y G, et al. Evolution of the corrosion product film and its effect on the erosion-corrosion behavior of two commercial 90Cu-10Ni tubes in seawater [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1148
doi: 10.1007/s40195-018-0745-1
21 Chi C Y, Li N, Xue J J, et al. Electrochemical behavior of B30 Cu-Ni alloy in seawater [J]. Mater. Prot., 2009, 42(8): 19
迟长云, 李宁, 薛建军 等. B30铜镍合金在海水中的电化学行为 [J]. 材料保护, 2009, 42(8): 19
22 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
doi: 10.1016/j.corsci.2015.05.006
23 Aben T, Tromans D. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions [J]. J. Electrochem. Soc., 1995, 142: 398
doi: 10.1149/1.2044031
24 North R F, Pryor M J. The nature of protective films formed on a Cu-Fe alloy [J]. Corros. Sci., 1969, 9: 509
doi: 10.1016/0010-938X(69)90021-3
25 Feng L, Wang Y H, Zhong L, et al. Influence of short-term storage on corrosion behavior of copper [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 375
冯林, 王燕华, 钟莲 等. 短期贮存对金属铜腐蚀电化学行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 375
26 North R F, Pryor M J. The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys [J]. Corros. Sci., 1970, 10: 297
doi: 10.1016/S0010-938X(70)80022-1
27 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
28 Wang G Y, Wang H J, Li X L, et al. Corrosion and Protection of Natural Environment [M]. Beijing: Chemical Industry Press, 1997
王光雍, 王海江, 李兴濂 等. 自然环境的腐蚀与防护: 大气·海水·土壤 [M]. 北京: 化学工业出版社, 1997
29 Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
丁国清, 李向阳, 张波 等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
30 Fang Z G, Liu B. Corrosion and Protection of Submarine Structures [M]. Beijing: National Defense Industry Press, 2017
方志刚, 刘斌. 潜艇结构腐蚀防护 [M]. 北京: 国防工业出版社, 2017
31 Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
doi: 10.1016/j.corsci.2006.07.003
32 Kato C, Pickering H W. A rotating disk study of the corrosion behavior of Cu-9.4Ni-1.7Fe alloy in air-saturated aqueous NaCl solution [J]. J. Electrochem. Soc., 1984, 131: 1219
doi: 10.1149/1.2115791
33 Chauhan P K, Gadiyar H S. An xps study of the corrosion of Cu-10Ni alloy in unpolluted and polluted sea-water; the effect of FeSO4 addition [J]. Corros. Sci., 1985, 25: 55
doi: 10.1016/0010-938X(85)90088-5
34 Chang Q P, Chen Y Y, Song F, et al. Corrosion properties of B30 Cu-Ni alloy and 316L stainless steel in a heat pump system [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 544
常钦鹏, 陈友媛, 宋芳 等. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 34: 544
35 Badaw W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions [J]. Electrochim. Acta, 2005, 50: 3603
doi: 10.1016/j.electacta.2004.12.030
[1] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[3] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[4] Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Shuan LIU,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution II—Temperature and Dissolved Oxygen[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[5] Jiangwei WANG,Jie ZHANG,Shougang CHEN,Jizhou DUAN,Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
[6] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[7] XU Hong, YUAN Jun, ZHU Zhongliang, ZHANG Qian, ZHANG Naiqiang. Oxidation Behavior of Ferritic-martensitic Steel P92 Exposed to Supercritical Water at 600 ℃/25 MPa[J]. 中国腐蚀与防护学报, 2014, 34(2): 119-124.
[8] Jianping Li; Guoxian Zhao. DYNAMIC CORROSION BEHAVIORS OF N80,P105 AND SM110 STEEL[J]. 中国腐蚀与防护学报, 2005, 25(4): 241-244 .
No Suggested Reading articles found!