Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1043-1050    DOI: 10.11902/1005.4537.2021.272
Current Issue | Archive | Adv Search |
Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-
WANG Xiaohong(), LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
Cite this article: 

WANG Xiaohong, LI Zishuo, TANG Yufeng, TAN Hao, JIANG Yangang. Influence of Cr Content on Characteristics of Corrosion Product Film Formed on Several Steels in Artifitial Stratum Waters Containing CO2-H2S-Cl-. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1043-1050.

Download:  HTML  PDF(12942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion rate of L80, L80Cr13, 22Cr and 25Cr in CO2-H2S-Cl--containing artificial stratum waters in a high temperature and high pressure autoclave equipped with electromagnetic drive shaft was evaluated by means of mass loss method. The surface morphology and element distributions of corrosion product films were analyzed by SEM, EDS and XRD. The roughness and the pitting morphology of the material surface after corrosion was characterized by means of AFM and CLSM respectively. The results suggested that the corrosion rates of L80Cr13, L80, 22Cr and 25Cr decreased sequentially in the artificial stratum water with 0.12 MPa CO2 0.003 MPa H2S, 150.8 g/L Cl- at 80 ℃ for samples with rotating speed of 100 r/min. The corrosion product film on the surface of L80Cr13 was mainly composed of Cr2O3 and Cr(OH)3, which was locally damaged under the action of Cl-, thereby, severe pitting corrosion emerged; the corrosion product film on the surface of L80 was mainly composed of FeS and FeCO3, which has certain protective effect for the steel,thus the steel suffered from slight pitting corrosion. There is a passivation film formed only on the surface of steels 22Cr and 25Cr, while little pitting was detected.

Key words:  chromium content      stainless steel      CO2-H2S-Cl-      corrosion product scale     
Received:  09 October 2021     
ZTFLH:  TG174  
Fund: Application Basic Project of Sichuan Provincial Department of Science and Technology(2021YJ0346);Key Open Experimental Projects of Southwest Petroleum University(2020KSZ05011)
About author:  WANG Xiaohong, E-mail: xhwang3368@swpu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.272     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1043

SteelCSiMnPSCrBAlFe
L800.210.161.310.00930.00270.150.00230.030Bal.
L80Cr130.200.240.490.0160.001712.90.00230.033Bal.
22Cr0.0180.421.320.0220.001322.40.00210.010Bal.
25Cr0.00940.350.790.0240.001925.10.00440.018Bal.
Table 1  Chemical compositions of four test steels (mass fraction / %)
Fig.1  AFM morphologies (a, c, e, g) and surface roughnesses (b, d, f, h) of L80 (a,b), L80Cr13 (c, d), 22Cr (e, f) and 25Cr (g, h) steels after removing the corrosion product layers
Fig.2  Surface SEM images of L80 (a, c) and L80Cr13 (b, d) alloys after immersion in the simulated solution for 14 d
Fig.3  CLSM images (a, d), pitting densities (b, e) and average depths (c, f) of L80 (a-c) and L80Cr13 (d-f) steels after immersion in the simulated solution for 14 d
Fig.4  Macroscopic morphologies of L80 (a), L80Cr13 (b), 22Cr (c) and 25Cr (d) steels after immersion in the simulated oil-field stratum water for 14 d
Fig.5  Damage of the corrosion product film on L80Cr13 steel
Fig.6  Cross-sectional SEM topography (a), EDS line scanning results (b), microscopic morphology (c) and XRD pattern (d) of L80 steel after immersion in the simulated oil-field stratum water for l4 d
Fig.7  Position distributions of EDS analyzed points on L80 steel of spectrum 1-5 (a) and spectrum 35-37 (b)
Fig.8  Cross-sectional SEM topography (a), EDS line scanning results (b) and microscopic morphology (c) of L80Crl3 steel after immersion in the simulated stratum water for 14 d
Fig.9  Position distributions of EDS analyzed points on L80Cr13 steel of spectrum 20, 21 (a) and spectrum 34, 35 (b)
Fig.10  XRD pattern of L80Crl3 steel after immersion in the simulated stratum water for 14 d
[1] Ai Z J, Fan Y W, Zhao Q K. Review on H2S corrosion of oil gas tubing and its protection [J]. Surf. Technol., 2015, 44(9): 108
(艾志久, 范钰伟, 赵乾坤. H2S对油气管材的腐蚀及防护研究综述 [J]. 表面技术, 2015, 44(9): 108)
[2] Zhu S D, Liu H, Bai Z Q, et al. Dynamic corrosion behavior of P110 steel in stimulated oil field CO2/H2S environment [J]. Chem. Eng. Oil Gas, 2009, 38: 65
(朱世东, 刘会, 白真权 等. 模拟油田CO2/H2S环境中P110钢的动态腐蚀行为 [J]. 石油与天然气化工, 2009, 38: 65)
[3] Zhao G X, Huang J, Xue Y. Corrosion behavior of materials used for surface gathering and transportation pipeline in an oilfield [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 557
(赵国仙, 黄静, 薛艳. 某油田地面集输管道用材腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 557)
[4] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59: 659
doi: 10.5006/1.3277596
[5] Xie T, Zhang X C, Lin H, et al. Corrosion behavior of casing steel with different materials in CO2 and H2S environment [J]. Equip. Environ. Eng., 2021, 18(1): 57
(谢涛, 张晓诚, 林海 等. CO2和微量H2S共存环境中套管防腐优选研究 [J]. 装备环境工程, 2021, 18(1): 57)
[6] Dunlop A K, Hassell H L, Rhodes P R. Fundamental consideration in sweet gas well corrosion [A]. NACE International Corrosion 1983 Conference [C]. Anaheim: 1983
[7] Asami K, Hashimoto K, Shimodaira S. An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid [J]. Corros. Sci., 1978, 18: 151
doi: 10.1016/S0010-938X(78)80085-7
[8] Tian Y Q, Fu A Q, Hu J G, et al. Corrosion behavior of low Cr steel in CO2/H2S environment [J]. Surf. Technol., 2019, 48(5): 49
(田永强, 付安庆, 胡建国 等. 低Cr钢在CO2/H2S环境中的腐蚀行为研究 [J]. 表面技术, 2019, 48(5): 49)
[9] Zhao Z M. Oil and Gas Well Corrosion Protection and Material Selection Guide [M]. Beijing: Petroleum Industry Press, 2011
(赵章明. 油气井腐蚀防护与材质选择指南 [M]. 北京: 石油工业出版社, 2011)
[10] Wang F, Wei C Y, Huang T J, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46
(王峰, 韦春艳, 黄天杰 等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 46)
[11] Lu Y, Zhao J M, Zhang Y, et al. Factors controlling H2S/CO2 corrosion of X65 carbon steel [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci. Ed.), 2021, 48(3): 17
(陆原, 赵景茂, 张勇 等. X65碳钢的H2S/CO2腐蚀控制因素研究 [J]. 北京化工大学学报 (自然科学版), 2021, 48(3): 17)
[12] Li Q, Zhang D P, Wang W, et al. Evaluation of actual corrosion status of L80 tubing steel and subsequent electrochemical and SCC investigation in lab [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 317
(李清, 张德平, 王薇 等. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 317)
[13] Srinivasan S, Tebbal S. Critical factors in predicting CO2/H2S corrosion in multiphase systems [A]. Corrosion 98 [C]. San Diego, California, 1998
[14] Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO2 environments [J]. Corros. Sci., 2012, 63: 246
doi: 10.1016/j.corsci.2012.06.006
[15] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
doi: 10.1016/S0013-4686(02)00841-1
[16] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment [J]. Mater. Lett., 2005, 59: 3370
doi: 10.1016/j.matlet.2005.06.002
[17] Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
doi: 10.1016/j.corsci.2016.06.003
[18] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test [J]. Corros. Sci., 2018, 145: 307
doi: 10.1016/j.corsci.2018.10.011
[19] Lee J B, Kim S W. Semiconducting properties of passive films formed on Fe-Cr alloys using capacitiance measurements and cyclic voltammetry techniques [J]. Mater. Chem. Phys., 2007, 104: 98
doi: 10.1016/j.matchemphys.2007.02.089
[20] Moreira R M, Franco C V, Joia C J B M, et al. The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid [J]. Corros. Sci., 2004, 46: 2987
doi: 10.1016/j.corsci.2004.05.020
[21] Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
doi: 10.1016/j.electacta.2018.08.156
[22] Han P, Chen C F, Yu H B, et al. Study of pitting corrosion of L245 steel in H2S environments induced by imidazoline quaternary ammonium salts [J]. Corros. Sci., 2016, 112: 128
doi: 10.1016/j.corsci.2016.07.006
[23] Liu W, Dou J J, Lu S L, et al. Effect of silty sand in formation water on CO2 corrosion behavior of carbon steel [J]. Appl. Surf. Sci., 2016, 367: 438
doi: 10.1016/j.apsusc.2016.01.228
[24] Zhang W H. Stainless Steel and its Heat Treatment [M]. Shenyang: Liaoning Science and Technology Press, 2010
(张文华. 不锈钢及其热处理 [M]. 沈阳: 辽宁科学技术出版社, 2010)
[25] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Construct. Build. Mater., 2020, 238: 117763
doi: 10.1016/j.conbuildmat.2019.117763
[26] Bhatt R B, Kamat H S, Ghosal S K, et al. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds [J]. J. Mater. Eng. Perform., 1999, 8: 591
doi: 10.1007/s11665-999-0014-6
[27] Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[4] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[5] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[6] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[8] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[10] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[11] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[12] HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[13] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[14] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[15] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
No Suggested Reading articles found!