Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 495-503    DOI: 10.11902/1005.4537.2019.232
Current Issue | Archive | Adv Search |
Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction
PAN Chengcheng,MA Chao,XIA Dahai()
Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(13977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The relevance of the corrosion initiation in a chlorine ions containing atmosphere with the surface morphology, peculiarly the texture of metallic materials such as Q235B carbon steel, T91 steel, 7050 Al-alloy and LY12 Al-alloy was studied by means of an atmospheric corrosion chamber and electron backscattering diffraction (EBSD) technique. The results showed that the surface texture of Q235B has no significant influence on the initiation and development of uniform corrosion in the chlorine polluted atmosphere, which may be ascribed to that Q235B steel is activated in the test atmosphere. T91 steel tends to be corroded at grain boundaries, while pitting corrosion is apt to initiate on the grain surface with high surface energy for 7050 Al-alloy and LY12 Al-alloy. Besides, for the metallic materials sensitive to local corrosion, the corrosion of which is likely to occur at sites where the passivation film tends to be destroyed easily, in other words, the passivation film has poor stability at grain boundaries and on spots with high surface energy.

Key words:  atmospheric corrosion      EBSD      crystal texture      preferred orientation     
Received:  15 March 2019     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(51701140)
Corresponding Authors:  Dahai XIA     E-mail:  dahaixia@tju.edu.cn

Cite this article: 

PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 495-503.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.232     OR     https://www.jcscp.org/EN/Y2019/V39/I6/495

SampleCMoPVMnCrNiSiNbSCuFe
Q235B0.21---0.017---0.58------0.21---0.0360.020Bal.
T910.100.89---0.200.408.900.120.240.08------Bal.
Table 1  Chemical composition of experimental steel (mass fraction / %)
SampleCuMgMnTiZnFeSiNiCrAl
70502.0~2.61.9~2.60.10.065.7~6.70.150.12---0.04Bal.
LY124.181.3~1.80.30.15---0.50.50.1---Bal.
Table 2  Chemical composition of aluminium alloy for experiment (mass fraction / %)
Fig.1  Surface topographies of Q235B steel (a), T91 steel (b), 7050 Al alloy (c) and LY12 Al alloy (d)detected area
Fig.2  Total Euler angle diagram
Fig.3  Sample placement pattern (RD: rolling direction; TD: transverse direction; ND: normal direction)
Fig.4  Pole figures at equatorial plane for crystal planes: (a) {001}, (b) {011}, (c) {111}
Fig.5  IPF mapping of Q235B steel: (a) transverse (X0), (b) longitudinal (Y0), (c) normal direction (Z0), (d) correspondence between crystal plane orientation and color
Fig.6  IPF distribution of horizontal (X0), longitudinal (Y0) and normal (Z0) direction of Q235B steel: (a) scatter diagrams, (b) contour map
Fig.7  Q235B steel surface corrosion morphologies changes with 7 h (a), 15.5 h (b), 20 h (c) and compari-son between surface corrosion morphology and surface IPF mapping (d)
Fig.8  Total Euler angle diagrams of T91 steel (a), 7050 Al alloy (b) and LY12 Al alloy (c)
Fig.9  Pole figures (equatorial plane) of T91 steel (a), 7050 Al alloy (b) and LY12 Al alloy (c)
Fig.10  IPF mapping at X0 direction (a1~c1), surface morphologies after 10 h salt spray test (a3~c3), and the comparison between them respectively for corresponding the corrosion behavior to the crystal orientation at metal surface (a2~c2) of T91 steel (a1~a3), 7050 Al alloy (b1~b3) and LY12 Al alloy (c1~c3)
Fig.11  Scatter diagrams (a1~a3) and contour maps (b1~b3) of T91 steel (a1, b1), 7050 Al alloy (a2, b2) and LY Al alloy (a3, b3)
[1] Leygra C, Wallinder I O, Tidblad J, et al. The electrochemical society series [A]. Atmospheric Corrosion [M]. New York: John Wiley & Sons, Inc., 2016
[2] Xia D H, Ma C, Song S Z, et al. Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique [J]. Sens. Actuat., 2017, 252B: 353
[3] Xia D H, Song S Z, Li J, et al. On-line monitoring atmospheric corrosion of metal materials by using a novel corrosion electrochemical sensor [J]. Corros. Sci. Prot. Technol., 2017, 29: 581
[3] (夏大海, 宋诗哲, 李健等. 新型腐蚀电化学传感器在金属材料大气腐蚀现场检测中的应用 [J]. 腐蚀科学与防护技术, 2017, 29: 581)
[4] Song S Z, Zhao W X, Wang J H, et al. Field corrosion detection of nuclear materials using electrochemical noise techinique [J]. Prot. Met. Phys. Chem. Surf., 2018, 54: 340
[5] Han L, Xia D H, Song S Z, et al. Online monitoring of the atmospheric corrosion of aluminium alloys using electrochemical noise technique [J]. Russ. J. Electrochem., 2018, 54: 623
[6] Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods [J]. Measurement, 2019, 138: 54
[7] Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
[7] (郭明晓, 潘晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65)
[8] Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
[8] (屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062)
[9] Humphreys F J. Review grain and subgrain characterisation by electron backscatter diffraction [J]. J. Mater. Sci., 2001, 36: 3833
[10] Humphreys F J. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD) [J]. Scr. Mater., 2004, 51: 771
[11] Groeber M, Ghosh S, Uchic M D. A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: Statistical characterization [J]. Acta Mater., 2008, 56: 1257
[12] Lücke K, Pospiech J, Virnich K H, et al. On the problem of the reproduction of the true orientation distribution from pole figures [J]. Acta Metall., 1981, 29: 167
[13] Humphreys J. Texture analysis: Macrotexture, microtexture and orientation mapping [J]. J. Microsc., 2001, 203: 231
[14] Yang P. Electron Backscatter Diffraction Technology and its Application [M]. Beijing: Metallurgical Industry Press, 2007
[14] (杨平. 电子背散射衍射技术及其应用 [M]. 北京: 冶金工业出版社, 2007)
[15] Feng C, Peng B C, Xie Y, et al. Corrosion behavior of T91 steel in neutral salt spray with 5.0%NaCl solution [J]. Corros. Prot., 2018, 39: 431
[15] (冯超, 彭碧草, 谢亿等. T91钢在5.0%NaCl中性盐雾中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 431)
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[3] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[4] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[5] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[6] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[7] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[8] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[9] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[10] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[11] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[12] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[13] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
[14] Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[15] Qimeng CHEN,Junxi ZHANG,Xujie YUAN,Nianwei DAI. Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
No Suggested Reading articles found!